《Some Statistical Problems with High Dimensional Financial data》
---
作者:
Arnab Chakrabarti, Rituparna Sen
---
最新提交年份:
2018
---
英文摘要:
For high dimensional data, some of the standard statistical techniques do not work well. So modification or further development of statistical methods are necessary. In this paper, we explore these modifications. We start with the important problem of estimating high dimensional covariance matrix. Then we explore some of the important statistical techniques such as high dimensional regression, principal component analysis, multiple testing problems and classification. We describe some of the fast algorithms that can be readily applied in practice.
---
中文摘要:
对于高维数据,一些标准的统计技术不能很好地工作。因此,有必要对统计方法进行修改或进一步发展。在本文中,我们将探讨这些修改。我们从估计高维协方差矩阵的重要问题开始。然后,我们探讨了一些重要的统计技术,如高维回归、主成分分析、多重检验问题和分类。我们描述了一些易于在实践中应用的快速算法。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
---
PDF下载:
-->
Some_Statistical_Problems_with_High_Dimensional_Financial_data.pdf
(549.25 KB)


雷达卡



京公网安备 11010802022788号







