楼主: 能者818
658 11

[量化金融] 欧洲公司债券的中间价估计:粒子滤波 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
39.5040
学术水平
0 点
热心指数
1 点
信用等级
0 点
经验
24699 点
帖子
4115
精华
0
在线时间
1 小时
注册时间
2022-2-24
最后登录
2024-12-24

楼主
能者818 在职认证  发表于 2022-6-10 21:33:22 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
英文标题:
《Mid-price estimation for European corporate bonds: a particle filtering
  approach》
---
作者:
Olivier Gu\\\'eant, Jiang Pu
---
最新提交年份:
2019
---
英文摘要:
  In most illiquid markets, there is no obvious proxy for the market price of an asset. The European corporate bond market is an archetypal example of such an illiquid market where mid-prices can only be estimated with a statistical model. In this OTC market, dealers / market makers only have access, indeed, to partial information about the market. In real time, they know the price associated with their trades on the dealer-to-dealer (D2D) and dealer-to-client (D2C) markets, they know the result of the requests for quotes (RFQ) they answered, and they have access to composite prices (e.g., Bloomberg CBBT). This paper presents a Bayesian method for estimating the mid-price of corporate bonds by using the real-time information available to a dealer. This method relies on recent ideas coming from the particle filtering / sequential Monte-Carlo literature.
---
中文摘要:
在大多数非流动性市场中,资产的市场价格没有明显的代表性。欧洲公司债券市场是这种非流动性市场的一个典型例子,在这种市场中,中间价只能用统计模型来估计。在这个OTC市场中,经销商/做市商实际上只能获得有关市场的部分信息。他们实时了解经销商对经销商(D2D)和经销商对客户(D2C)市场上与其交易相关的价格,知道他们回答的报价请求(RFQ)的结果,并可以获得综合价格(如彭博CBBT)。本文提出了一种利用交易商可获得的实时信息估计公司债券中间价的贝叶斯方法。该方法依赖于来自粒子滤波/顺序蒙特卡罗文献的最新想法。
---
分类信息:

一级分类:Quantitative Finance        数量金融学
二级分类:Trading and Market Microstructure        交易与市场微观结构
分类描述:Market microstructure, liquidity, exchange and auction design, automated trading, agent-based modeling and market-making
市场微观结构,流动性,交易和拍卖设计,自动化交易,基于代理的建模和做市
--

---
PDF下载:
--> Mid-price_estimation_for_European_corporate_bonds:_a_particle_filtering_approach.pdf (1.24 MB)
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:粒子滤波 公司债券 公司债 中间价 Quantitative

沙发
何人来此 在职认证  发表于 2022-6-10 21:33:27
欧洲公司债券的中间价估计:粒子滤波法*Olivier Guéant+,Jiang Pu摘要在大多数非流动性市场中,资产的市场价格没有明显的代表性。欧洲公司债券市场是这种非流动性市场的一个典型例子,在这种市场中,中间价只能通过统计模型来估计。在这个OTC市场中,经销商/做市商实际上只能获得有关市场的部分信息。他们实时了解经销商对经销商(D2D)和经销商对客户(D2C)市场上与他们的交易相关的价格,知道他们回答的询价单(RFQ)的结果,并且可以获得综合价格(如BloombergCBBT)。本文提出了一种利用交易商可获得的实时信息估计公司债券中间价的贝叶斯方法。该方法依赖于来自粒子过滤/顺序蒙特卡罗文献的最新想法。关键词:贝叶斯过滤、序贯蒙特卡罗、中间价发现、公司债券、报价请求。1简介欧洲公司债券市场正在经历重大变化。由于长期的低利率环境,债券发行量大幅增加,市场整体规模随之飙升(见[21]和[22])。此外,尽管欧洲公司债券市场规模仍然很大,但它越来越依赖电子平台(主要是多经销商到客户平台——MD2C)。因此,可供卖方(即经销商/做市商)使用的数据量一直在增加,这为统计建模打开了大门,尤其是在构建或改进做市算法方面。做市商在任何市场中的作用都是为其他市场参与者提供流动性,即。

藤椅
kedemingshi 在职认证  发表于 2022-6-10 21:33:30
提出他们准备好买卖各种资产的价格。就公司债券市场而言,做市商传统上在流动性提供和价格形成过程中发挥着重要作用。然而,如今,关于做市商在公司债券市场中所扮演的角色,存在着一场重要的辩论。一方面,做市商希望减少资产负债表上的风险。随后,大多数投资银行的销售部门都投入了数据分析,以更好地预测客户的需求,并积极主动地加快债券的周转,而且*这项研究是在欧洲金融研究所赞助下,由汇丰银行法国分行资助的研究倡议“三月行动、义务和驱动模式”的支持下进行的。然而,本文中提出的观点并不反映汇丰的观点或做法。作者要感谢保罗·亨利·巴赫(HSBC)、尼古拉斯·肖邦(ENSAE-CREST)、尼古拉斯·德劳克斯(HSBC)、亚历山大·吉诺特(HSBC)、让·米歇尔·拉斯利(路易·巴赫利尔研究所)、纪尧姆·梅西(HSBC)和塞巴斯蒂安·罗兰(HSBC)就此主题进行的对话。张彬彬(欧洲金融研究所)的帮助和见解也值得热烈感谢。最后,应该热烈感谢一位匿名裁判,感谢他富有洞察力的评论和对我们论文的透彻阅读。+巴黎大学索邦分校。索邦经济中心。106,Bd de l\'H^opital,75013巴黎欧洲金融研究所。巴黎证券交易所广场28号,75002。甚至,特别是在美国,从传统的本金交易模式转向无风险的本金交易模式,即做市商试图直接匹配利益(例如,参见[18])。

板凳
mingdashike22 在职认证  发表于 2022-6-10 21:33:33
另一方面,做市商正在投入时间和资源,通过算法自动化做市过程。从定量的角度来看,做市商面临的问题实际上是一个复杂的问题,包括静态和动态两部分。首先,任何做市商都面临着一个静态优化问题,即他所报价差的宽度:价差紧且交易多,而价差大且交易少。第二,也是最重要的一点,任何做市商都必须解决动态优化问题,以使其买卖报价适应其库存,因为他面临的主要风险是在资产价格上涨时持有资产,这可能是不利的。这个复杂的问题已经被经济学家(例如参见[11]或旧论文[19,20])和数学家(例如参见[1]、[3]、[5]、[13]、[14]、[15]等)研究过。在所有为解决做市商问题而开发的定量模型中,最优出价和有效报价都是根据基准价格得出的,基准价格取决于模型作者的措辞,即公平价格、中间价格或参考价格。在所有情况下,相关的价格过程都是外生的。量化做市商模型的作用实际上不是给证券定价,而是决定做市商应该设定的保证金/加价,以便在降低投资风险的同时赚钱,即在不利的市场条件下无法平仓(以低成本)的风险。在许多市场中,都有天然的基准价格。对于具有限额订单簿的流动性市场,中间价或最佳买入价和卖出价的成交量加权平均值确实是自然的和相关的。然而,就非流动性OTC市场而言,情况并不相同。公司债券市场是没有自然参考价格的市场的典范。

报纸
mingdashike22 在职认证  发表于 2022-6-10 21:33:37
大多数从业者将彭博社提供的CBBT中间价视为参考价格,但这显然是一种默认选择,尤其是因为用于获取CBBT出价和其他价格的算法不是公开的,有时无法提供价格,例如,因为计算出的出价高于计算出的要价。在本文中,我们的目标是利用做市商可获得的相关信息建立参考价格。我们的重点是欧洲公司债券市场,其中做市商实时了解其在经销商对经销商(D2D)和经销商对客户(D2C)市场上的交易价格以及他们回答的报价请求(RFQ)结果。当然,他们也会实时观察CBBT,但我们的目标是构建一个替代估计器。2关于欧洲公司债券市场中间价估计的学术文献不存在,主要是因为缺乏数据。从业人员过去常常将CBBT视为中等价格的代表,因为几乎没有其他选择。然而,今天,随着电子交易的重要性日益增加,尤其是随着经销商收到、回复和记录的RFQ数量不断增加,可以考虑CBBT价格的替代品。RFQ确实包含被请求的经销商在没有向客户提出最佳价格时遗漏的交易信息。对于使用这种类型的非线性(删失)信息,类卡尔曼滤波器是不够的。因此,我们提出了一种基于贝叶斯滤波的方法,更确切地说是基于粒子滤波(PF)/序贯蒙特卡罗(SMC)方法。

地板
能者818 在职认证  发表于 2022-6-10 21:33:40
它提供了每种考虑的债券基准参考收益率的分布——aSee彭博社关于CBBT的文档。在我们提出的模型中,CBBT仅用于估计参数。值得注意的是,在完成本文(2018年)时,欧盟刚刚开始实施贸易后透明度(通过MiFID II)。我们认为,贸易后透明度数据将以相关方式广泛用于商业目的,还需要一到两年的时间。在美国使用跟踪数据可以得出一个有趣的类比(见[9])。就交易后透明度数据而言,必须注意的是,交易时间与公布时间之间总是存在滞后。然而,我们的算法可以推广到这类数据。【10】中使用了一家大型投资银行的询价数据,通过统计模型分析了MD2C平台上经销商和客户的行为。在本文中,我们在基准收益率方面开展工作(债券到期收益率和基准参考收益率之间的差异在模型中是由房地产内生性定义的,即“在基准收益率到基准的任何给定距离上观察买卖交易的概率仅取决于该距离,而非侧面”(至少当做市商的库存低于平均水平时)。粒子滤波/序贯蒙特卡罗是一类在贝叶斯框架下提供概率分布序列蒙特卡罗近似的方法和算法。与经典滤波一样,人们希望推断出一种现象的概率分布,这种现象不是直接观察到的,而是一个人以顺序的方式接收部分数据(由于审查或噪音)。

7
何人来此 在职认证  发表于 2022-6-10 21:33:43
这些技术的主要思想是通过马尔可夫链对现象进行建模,并利用马尔可夫链的动力学和贝叶斯规则对观测值的应用,通过随时间传播的加权随机样本云来近似分布。这些方法通常仅限于低维问题。我们的论文【16】中描述了这种方法在信用指数上的应用示例,其中我们使用了Chopin等人的双贝叶斯方法【7】。在公司债券的高维情况下,必须正确看待传统上影响粒子过滤/顺序蒙特卡罗方法的“维度诅咒”。事实上,在流动性不足的市场中,由于交易很少同时发生在多个证券上,而且由于价格的差异,这种方法的规模似乎远远好于预期。在第2节中,我们首先介绍了粒子滤波算法的原理。我们还推导了递归方程,然后详细描述了与之相关的模拟过程。在第3节中,我们讨论了参数的估计,并在几个欧洲公司债券上演示了我们的算法。在第4节中,我们讨论了我们的方法的优缺点以及许多可能的推广。2算法原理2.1建模框架和goalsLetOhm, F、 (Ft)t∈R+,P是一个过滤概率空间,具有(Ft)t∈R+满足通常条件。我们考虑一组d公司债券。通常的市场惯例(至少对于投资级债券)不是考虑债券价格,而是考虑基准收益率(YtB),以消除债券价格中的无风险利率成分。在下文中,我们通过d维过程(yt)对d公司债券的中期YtB进行建模,并假设我∈ {1, . . .

8
能者818 在职认证  发表于 2022-6-10 21:33:48
,d},dyit=σidWit,(1),其中(Wt)是适应于(Ft)t的d维布朗运动∈R+,带ddwit,WjtE=ρi,jdt。我们用∑表示协方差矩阵∑i,j=ρi,jσiσj。备注1。我们考虑的(中期)YtB动力学模型当然过于简单。我们的选择受到几个因素的影响。首先,为了便于演示,我们选择了一个简单的模型。考虑到其自然基准(通常是具有类似期限的政府债券),而不是价格,以消除债券价格中的无风险利率成分。奥恩斯坦·乌伦贝克(Ornstein-Uhlenbeck)是另一种可能性,算法的原理也是一样的。其次,考虑到我们所考虑的算法的性质,重要的是模型的不同特征(“波动性”参数(σi)i)的值),而不是过程的特定动力学。我们介绍了d维Ornstein-Ulhenbeck过程之后的另一个过程(xt):dxt=-Axtdt+V dBt,xgiven,(2)其中A和V是d×d矩阵,(Bt)ta适应于(Ft)t的d维标准布朗运动∈R+,假设与过程(Wt)t无关。我们回忆起(例如参见[24])(xt)是一个高斯过程,t型∈ R+,τ>0,E[xt+τ| xt]=E-AτxtandV[xt+τ| xt]=Γ(τ),其中vec(Γ(τ))=(A Id+Id (A)-1(Id- 经验值(-(A) Id+Id A) τ))vec(V V),其中vec(·)指矢量化运算符,即vec((Mi,j)1≤i、 j≤d) =(M1,1,…,Md,1,…,M1,d,…,Md,d)。备注2。本文考虑A是对角矩阵。这在计算方面很重要,因为(A Id+Id (A)-1(Id- 经验值(-(A) Id+Id A) τ)是一个对角矩阵,通常是一个维数为d×d的方阵(当d较大时很难使用)。然而,值得注意的是,V可以是任何形式。实际上,如果A=diag(A,…,ad),那么我们有Γi,j(τ)=ai+aj1.- e-(ai+aj)τ(V V)i,j.备注3。

9
何人来此 在职认证  发表于 2022-6-10 21:33:51
与其考虑(xt)t的连续路径,还可以考虑随机变量(xt)为i.i.d.(和高斯)。这可以看作是我们的一个极限情况,其中a=aIdfora large,V相应地重新缩放。对于i∈ {1,…,d},我们引入了由ψit=ψiexp(xit),ψigiven定义的资产i的半出价-询问价差过程(ψit)。换句话说,yit+ψItan和yit- ψ分别为投标YtB和ask YtB。这里我们考虑矩阵∑,A,V和向量(ψi)1≤我≤敢于付出。我们将在第4节讨论估算。我们采用给定交易商D的观点,认为其可获得的信息对应于5种不同的情况:Jt=(i,1):客户在时间t从交易商D购买债券i(通过语音或平台)。在这种情况下,我们假设与交易关联的YtB为Yit=Yit- ψit+Itan和Dealer D的观测值为Ot=Yit,其中它是一个随机变量N(0,σi) 假设独立于所有其他随机变量。我们可以通过假设W和B之间存在非平凡的相关结构,使模型更具一般性,但相关结构很难估计。投标YtB必须高于要求YtB,投标价格才能低于要求价格。Jt=(i,2):客户在时间t将债券i出售给经销商D(通过语音或平台)。在这种情况下,我们假设与交易相关的YtB为Yit=Yit+ψit+Itan和经销商Dis Ot=Yit的观察结果,其中它是一个随机变量N(0,σi) 假设独立于所有其他随机变量。Jt=(i,3):客户在时间t通过RFQ从另一个交易商购买债券i。

10
mingdashike22 在职认证  发表于 2022-6-10 21:33:54
我们假设经销商D提出了YtB ZITB,但由于另一家经销商提出了更好的价格,所以没有选择。在这种情况下,我们假设与交易相关的YtB为Yit=Yit- ψit+it,在哪里它是一个随机变量N(0,σi) 假设独立于所有其他随机变量。经销商D的观察结果为Ot=1Yit≥青春痘。Jt=(i,4):客户在时间t通过RFQ将债券i出售给另一个交易商。我们假设经销商D提出了YtB ZITB,但由于另一家经销商提出了更好的价格,所以没有选择。在这种情况下,我们假设与交易相关的YtB为Yit=Yit+ψit+it,在哪里它是一个随机变量N(0,σi) 假设独立于所有其他随机变量。经销商D的观察结果为Ot=1Yit≤青春痘。Jt=(i,5):另一个交易商在交易商间经纪人(IDB)市场上与交易商D交易债券i。在这种情况下,我们假设与交易相关的YtB(用Yit表示)在范围[Yit]内- αit+it,yit+αit+it],其中它是一个随机变量N(0,σi) 假设独立于分配的随机变量,例如,αit可以与ψitor成比例选择为资产i的买卖价差(就基准收益率而言)的典型大小。交易商D的观察当然是Ot=Yit。前两种情况称为D2C交易。接下来的2个也是D2C交易,但从经销商D的角度来看,它们是“被交易”的RFQ。最后一个案例是D2D交易。我们的主要目标是根据上述信息,开发一种数学方法和算法,用于在线估计证券的中期YtB及其(一半)买卖价差。我们的重点是做市商(或做市算法)在必须流式处理或拒绝出价和/或提供资产的YtB/价格时所面临的实际问题。

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-1 19:33