楼主: chjy02
4971 13

[学科前沿] 好书分享:Inequalities: Theory of Majorization and Its Applications [推广有奖]

  • 4关注
  • 3粉丝

已卖:1124份资源

博士生

75%

还不是VIP/贵宾

-

威望
0
论坛币
5782 个
通用积分
48.8069
学术水平
1 点
热心指数
7 点
信用等级
0 点
经验
14412 点
帖子
205
精华
0
在线时间
470 小时
注册时间
2005-10-11
最后登录
2025-12-4

楼主
chjy02 发表于 2011-6-6 11:07:07 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Inequalities: Theory of Majorization and Its Applications

I Theory of Majorization
1 Introduction 3
A Motivation and Basic Definitions . . . . . . . . . . 3
B Majorization as a Partial Ordering . . . . . . . . . 18
C Order-Preserving Functions . . . . . . . . . . . . . 19
D Various Generalizations of Majorization . . . . . . . 21
2 Doubly Stochastic Matrices 29
A Doubly Stochastic Matrices and Permutation
Matrices . . . . . . . . . . . . . . . . . . . . . . . . 29
B Characterization of Majorization Using Doubly
StochasticMatrices . . . . . . . . . . . . . . . . . . 32
C Doubly Substochastic Matrices and Weak
Majorization . . . . . . . . . . . . . . . . . . . . . . 36
D Doubly Superstochastic Matrices and Weak
Majorization . . . . . . . . . . . . . . . . . . . . . . 42
E Orderings on D . . . . . . . . . . . . . . . . . . . . 45
F Proofs of Birkhoff’s Theorem and Refinements . . . 47
G Classes of Doubly Stochastic Matrices . . . . . . . . 52
xvii
xviii Contents
H More Examples of Doubly Stochastic and Doubly
Substochastic Matrices . . . . . . . . . . . . . . . . 61
I Properties of Doubly Stochastic Matrices . . . . . . 67
J Diagonal Equivalence of Nonnegative Matrices . . . 76
3 Schur-Convex Functions 79
A Characterization of Schur-Convex Functions . . . . 80
B Compositions Involving Schur-Convex Functions . . 88
C Some General Classes of Schur-Convex Functions . 91
D Examples I. Sums of Convex Functions . . . . . . . 101
E Examples II. Products of Logarithmically
Concave (Convex) Functions . . . . . . . . . . . . . 105
F Examples III. Elementary Symmetric Functions . . 114
G Muirhead’s Theorem . . . . . . . . . . . . . . . . . 120
H Schur-Convex Functions on D and Their
Extension to Rn . . . . . . . . . . . . . . . . . . . 132
I Miscellaneous Specific Examples . . . . . . . . . . . 138
J Integral Transformations Preserving
Schur-Convexity . . . . . . . . . . . . . . . . . . . . 145
K Physical Interpretations of Inequalities . . . . . . . 153
4 Equivalent Conditions for Majorization 155
A Characterization by Linear Transformations . . . . 155
B Characterization in Terms of Order-Preserving
Functions . . . . . . . . . . . . . . . . . . . . . . . . 156
C A Geometric Characterization . . . . . . . . . . . . 162
D A Characterization Involving Top Wage Earners . . 163
5 Preservation and Generation of Majorization 165
A Operations Preserving Majorization . . . . . . . . . 165
B Generation of Majorization . . . . . . . . . . . . . . 185
C Maximal and Minimal Vectors Under Constraints . 192
D Majorization in Integers . . . . . . . . . . . . . . . 194
E Partitions . . . . . . . . . . . . . . . . . . . . . . . 199
F Linear Transformations That Preserve Majorization 202
6 Rearrangements and Majorization 203
A Majorizations from Additions of Vectors . . . . . . 204
B Majorizations from Functions of Vectors . . . . . . 210
C Weak Majorizations from Rearrangements . . . . . 213
D L-Superadditive Functions—Properties
and Examples . . . . . . . . . . . . . . . . . . . . . 217
Contents xix
E Inequalities Without Majorization . . . . . . . . . . 225
F A Relative Arrangement Partial Order . . . . . . . 228
II Mathematical Applications
7 Combinatorial Analysis 243
A Some Preliminaries on Graphs, Incidence
Matrices, and Networks . . . . . . . . . . . . . . . . 243
B Conjugate Sequences . . . . . . . . . . . . . . . . . 245
C The Theorem of Gale and Ryser . . . . . . . . . . . 249
D Some Applications of the Gale–Ryser Theorem . . . 254
E s-Graphs and a Generalization of the
Gale–Ryser Theorem . . . . . . . . . . . . . . . . . 258
F Tournaments . . . . . . . . . . . . . . . . . . . . . . 260
G Edge Coloring in Graphs . . . . . . . . . . . . . . . 265
H Some Graph Theory Settings in Which
Majorization Plays a Role . . . . . . . . . . . . . . 267
8 Geometric Inequalities 269
A Inequalities for the Angles of a Triangle . . . . . . . 271
B Inequalities for the Sides of a Triangle . . . . . . . 276
C Inequalities for the Exradii and Altitudes . . . . . . 282
D Inequalities for the Sides, Exradii, and Medians . . 284
E Isoperimetric-Type Inequalities for Plane Figures . 287
F Duality Between Triangle Inequalities and
Inequalities Involving Positive Numbers . . . . . . . 294
G Inequalities for Polygons and Simplexes . . . . . . . 295
9 MatrixTheory 297
A Notation and Preliminaries . . . . . . . . . . . . . . 298
B Diagonal Elements and Eigenvalues of a Hermitian Matrix
. . . . . . . . . . . . . . . . . . . . . . . . . . . 300
C Eigenvalues of a Hermitian Matrix and Its
Principal Submatrices . . . . . . . . . . . . . . . . . 308
D Diagonal Elements and Singular Values . . . . . . . 313
E Absolute Value of Eigenvalues and Singular Values 317
F Eigenvalues and Singular Values . . . . . . . . . . . 324
G Eigenvalues and Singular Values of A, B,
and A + B . . . . . . . . . . . . . . . . . . . . . . . 329
H Eigenvalues and Singular Values of A, B, and AB . 338
I Absolute Values of Eigenvalues and Row Sums . . . 347

Inequalities: Theory of Majorization and Its Applications
abbr_c4fc36cfadd3640ed0e73413f9b673cd.zip (3.11 MB, 需要: 5 个论坛币) 本附件包括:
  • A.W.Marshall_I.Olkin-Inequalities-Theory_of_Majorization_and_Its_Applications-0124737501.djvu
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:inequalities Applications Majorization Application cation

沙发
sesame_oil(未真实交易用户) 发表于 2011-6-6 11:12:49
[quote]chjy02 发表于 2011-6-6 11:07
Inequalities: Theory of Majorization and Its Applications

I Theory of Majorization
1 Introduction 3
A Motivation and Basic Definitions . . . . . . . . . . 3
B Majorization as a Partial Ordering . . . . . . . . . 18
C Order-Preserving Functions . . . . . . . . . . . . . 19
D Various Generalizations of Majorization . . . . . . . 21
2 Doubly Stochastic Matrices 29
A Doubly Stochastic Matrices and Permutation
Matrices . . . . . . . . . . . . . . . . . . . . . . . . 29
B Characterization of Majorization Using Doubly
StochasticMatrices . . . . . . . . . . . . . . . . . . 32
C Doubly Substochastic Matrices and Weak
Majorization . . . . . . . . . . . . . . . . . . . . . . 36
D Doubly Superstochastic Matrices and Weak
Majorization . . . . . . . . . . . . . . . . . . . . . . 42
E Orderings on D . . . . . . . . . . . . . . . . . . . . 45
F Proofs of Birkhoff’s Theorem and Refinements . . . 47
G Classes of Doubly Stochastic Matrices . . . . . . . . 52
xvii
xviii Contents
H More Examples of Doubly Stochastic and Doubly
Substochastic Matrices . . . . . . . . . . . . . . . . 61
I Properties of Doubly Stochastic Matrices . . . . . . 67
J Diagonal Equivalence of Nonnegative Matrices . . . 76
3 Schur-Convex Functions 79
A Characterization of Schur-Convex Functions . . . . 80
B Compositions Involving Schur-Convex Functions . . 88
C Some General Classes of Schur-Convex Functions . 91
D Examples I. Sums of Convex Functions . . . . . . . 101
E Examples II. Products of Logarithmically
Concave (Convex) Functions . . . . . . . . . . . . . 105
F Examples III. Elementary Symmetric Functions . . 114
G Muirhead’s Theorem . . . . . . . . . . . . . . . . . 120
H Schur-Convex Functions on D and Their
Extension to Rn . . . . . . . . . . . . . . . . . . . 132
I Miscellaneous Specific Examples . . . . . . . . . . . 138
J Integral Transformations Preserving
Schur-Convexity . . . . . . . . . . . . . . . . . . . . 145
K Physical Interpretations of Inequalities . . . . . . . 153
4 Equivalent Conditions for Majorization 155
A Characterization by Linear Transformations . . . . 155
B Characterization in Terms of Order-Preserving
Functions . . . . . . . . . . . . . . . . . . . . . . . . 156
C A Geometric Characterization . . . . . . . . . . . . 162
D A Characterization Involving Top Wage Earners . . 163
5 Preservation and Generation of Majorization 165
A Operations Preserving Majorization . . . . . . . . . 165
B Generation of Majorization . . . . . . . . . . . . . . 185
C Maximal and Minimal Vectors Under Constraints . 192
D Majorization in Integers . . . . . . . . . . . . . . . 194
E Partitions . . . . . . . . . . . . . . . . . . . . . . . 199
F Linear Transformations That Preserve Majorization 202
6 Rearrangements and Majorization 203
A Majorizations from Additions of Vectors . . . . . . 204
B Majorizations from Functions of Vectors . . . . . . 210
C Weak Majorizations from Rearrangements . . . . . 213
D L-Superadditive Functions—Properties
and Examples . . . . . . . . . . . . . . . . . . . . . 217
Contents xix
E Inequalities Without Majorization . . . . . . . . . . 225
F A Relative Arrangement Partial Order . . . . . . . 228
II Mathematical Applications
7 Combinatorial Analysis 243
A Some Preliminaries on Graphs, Incidence
Matrices, and Networks . . . . . . . . . . . . . . . . 243
B Conjugate Sequences . . . . . . . . . . . . . . . . . 245
C The Theorem of Gale and Ryser . . . . . . . . . . . 249
D Some Applications of the Gale–Ryser Theorem . . . 254
E s-Graphs and a Generalization of the
Gale–Ryser Theorem . . . . . . . . . . . . . . . . . 258
F Tournaments . . . . . . . . . . . . . . . . . . . . . . 260
G Edge Coloring in Graphs . . . . . . . . . . . . . . . 265
H Some Graph Theory Settings in Which
Majorization Plays a Role . . . . . . . . . . . . . . 267
8 Geometric Inequalities 269
A Inequalities for the Angles of a Triangle . . . . . . . 271
B Inequalities for the Sides of a Triangle . . . . . . . 276
C Inequalities for the Exradii and Altitudes . . . . . . 282
D Inequalities for the Sides, Exradii, and Medians . . 284
E Isoperimetric-Type Inequalities for Plane Figures . 287
F Duality Between Triangle Inequalities and
Inequalities Involving Positive Numbers . . . . . . . 294
G Inequalities for Polygons and Simplexes . . . . . . . 295
9 MatrixTheory 297
A Notation and Preliminaries . . . . . . . . . . . . . . 298
B Diagonal Elements and Eigenvalues of a Hermitian Matrix
. . . . . . . . . . . . . . . . . . . . . . . . . . . 300
C Eigenvalues of a Hermitian Matrix and Its
Principal Submatrices . . . . . . . . . . . . . . . . . 308
D Diagonal Elements and Singular Values . . . . . . . 313
E Absolute Value of Eigenvalues and Singular Values 317
F Eigenvalues and Singular Values . . . . . . . . . . . 324
G Eigenvalues and Singular Values of A, B,
and A + B . . . . . . . . . . . . . . . . . . . . . . . 329
H Eigenvalues and Singular Values of A, B, and AB . 338
I Absolute Values of Eigenvalues and Row Sums . . . 347

Inequalities: Theory of Majorization and Its Applications
[/quo谢谢楼主了

藤椅
fielix(真实交易用户) 发表于 2011-10-28 17:22:59
{:soso_e163:}

板凳
xmufr(真实交易用户) 发表于 2011-10-30 10:17:19
好东西,正需要,多谢楼主哇~~

报纸
david398121(真实交易用户) 在职认证  发表于 2011-11-11 10:39:47
多谢楼主,这本书价值很高。

地板
zhangjuan0515(真实交易用户) 发表于 2011-11-15 20:48:59
好书

7
marlboro_xu(真实交易用户) 发表于 2011-11-17 05:10:09
好书,谢谢分享!

8
fielix(真实交易用户) 发表于 2012-1-18 11:00:28
好书

9
牛肉干(真实交易用户) 在职认证  发表于 2012-2-28 22:13:40
晕~论坛币不够!!!

10
samurai023(真实交易用户) 发表于 2012-2-28 22:45:52
这书看起来非常不错,感谢楼主啊。

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-24 21:27