《Business Taxonomy Construction Using Concept-Level Hierarchical
Clustering》
---
作者:
Haodong Bai and Frank Z. Xing and Erik Cambria and Win-Bin Huang
---
最新提交年份:
2019
---
英文摘要:
Business taxonomies are indispensable tools for investors to do equity research and make professional decisions. However, to identify the structure of industry sectors in an emerging market is challenging for two reasons. First, existing taxonomies are designed for mature markets, which may not be the appropriate classification for small companies with innovative business models. Second, emerging markets are fast-developing, thus the static business taxonomies cannot promptly reflect the new features. In this article, we propose a new method to construct business taxonomies automatically from the content of corporate annual reports. Extracted concepts are hierarchically clustered using greedy affinity propagation. Our method requires less supervision and is able to discover new terms. Experiments and evaluation on the Chinese National Equities Exchange and Quotations (NEEQ) market show several advantages of the business taxonomy we build. Our results provide an effective tool for understanding and investing in the new growth companies.
---
中文摘要:
商业分类法是投资者进行股票研究和做出专业决策不可或缺的工具。然而,由于两个原因,确定新兴市场的行业部门结构具有挑战性。首先,现有的分类法是为成熟市场设计的,对于具有创新商业模式的小公司来说,这可能不是合适的分类。其次,新兴市场正在快速发展,因此静态业务分类法无法及时反映新特性。在本文中,我们提出了一种从企业年度报告的内容自动构建业务分类的新方法。提取的概念使用贪婪的亲和传播进行分层聚类。我们的方法需要较少的监督,并且能够发现新的术语。在中国全国股票交易所(NEEQ)市场上的实验和评估显示了我们构建的业务分类法的一些优势。我们的研究结果为理解和投资新成长公司提供了有效的工具。
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Computation and Language 计算与语言
分类描述:Covers natural language processing. Roughly includes material in ACM Subject Class I.2.7. Note that work on artificial languages (programming languages, logics, formal systems) that does not explicitly address natural-language issues broadly construed (natural-language processing, computational linguistics, speech, text retrieval, etc.) is not appropriate for this area.
涵盖自然语言处理。大致包括ACM科目I.2.7类的材料。请注意,人工语言(编程语言、逻辑学、形式系统)的工作,如果没有明确地解决广义的自然语言问题(自然语言处理、计算语言学、语音、文本检索等),就不适合这个领域。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Portfolio Management 项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--
---
PDF下载:
-->
Business_Taxonomy_Construction_Using_Concept-Level_Hierarchical_Clustering.pdf
(675.98 KB)


雷达卡



京公网安备 11010802022788号







