ISP Introduction to Statistics with Python(Python 统计分析)中文版
内容简介 · · · · · ·
本书以基础的统计学知识和假设检验为重点,简明扼要地讲述了Python在数据分析、可视化和统计建模中的应用。主要包括Python的简单介绍、研究设计、数据管理、概率分布、不同数据类型的假设检验、广义线性模型、生存分析和贝叶斯统计学等从入门到高级的内容。
本书利用Python这门开源语言,不仅在直观上对数据分析和统计检验提供了很好的理解,而且在相关数学公式的讲解上也能够做到深入浅出。本书的可操作性很强,配套提供相关的代码和数据,读者可以依照书中所讲,复现和加深对相关知识的理解。
本书适合对统计学和Python有兴趣的读者,特别是在实验学科中需要利用Python的强大功能来进行数据处理和统计分析的学生和研究人员。
作者简介 · · · · · ·
作者简介
托马斯·哈斯尔万特(Thomas Haslwanter)在学术机构中有超过10年的教学经验,是林茨上奥地利州应用科学大学(University of Applied Sciences Upper Austria in Linz)医学工程系的教授,瑞士苏黎世联邦理工学院讲师,并曾在澳大利亚悉尼大学和德国图宾根大学担任过研究员。他在医学研究方面经验丰富,专注于眩晕症的诊断、治疗和康复。在深入使用Matlab十五年后,他发现Python非常强大,并将其用于统计数据分析、声音和图像处理以及生物仿真应用。