阅读权限 255 威望 0 级论坛币 386043 个 通用积分 526.9898 学术水平 127 点 热心指数 140 点 信用等级 103 点 经验 46986 点 帖子 1773 精华 0 在线时间 2509 小时 注册时间 2007-11-5 最后登录 2024-8-16
4# celon081211
我很少做空间计量模型,一直都是按照金融学的要求,做金融建模的,也不知道这个是你要的程序不。
我贴上程序给你吧。上面的结果就是用这个程序做的。
% Demonstration file for Elhorst Panel Data code
%
% Dataset downloaded from www.wiley.co.uk/baltagi/
% Spatial weights matrix constructed by Elhorst
%
% written by: J.Paul Elhorst summer 2010
% University of Groningen
% Department of Economics
% 9700AV Groningen
% the Netherlands
% j.p.elhorst@rug.nl
%
% REFERENCE:
% Elhorst JP (2010) Matlab Software for Spatial Panels. Under review.
%
% Elhorst JP (2010) Spatial Panel Data Models. In Fischer MM, Getis A (Eds.)
% Handbook of Applied Spatial Analysis, Ch. C.2. Springer: Berlin Heidelberg New York.
%
% New:
% 1) Direct/Indirect effect esimates of the explanatory variables
% LeSage JP, Pace RK (2009) Introduction to Spatial Econometrics. Boca Raton, Taylor & Francis Group.
% routine direct_indirect_effects_estimates(results,W,spat_model) is written by J.P. Elhorst
% routines panel_effects_sar(results,vnames,W) and panel_effects_sar(results,vnames,W)
% are written and made available by D. Lacombe
% User may use both routines (note: results are slightly different from each other since they are based on draws from a distrobution
% or choose one particular routine. If N is large, user should choose
% Lacombe's routines, since this one is much more efficient computationally
% 2) Bias correction of coefficient estimates
% Lee Lf, Yu J. (2010) Estimation of spatial autoregressive models with
% fixed effects, Journal of Econometrics 154: 165-185.
% 3) Selection framework to determine which spatial panel data model best
% describes the data.
% dimensions of the problem
A=wk1read('cigarette.wk1',1,0);
W1=wk1read('Spat-Sym-US.wk1');
T=30; % number of time periods
N=46; % number of regions
% row-normalize W
W=normw(W1); % function of LeSage
y=A(:,[3]); % column number in the data matrix that corresponds to the dependent variable
x=A(:,[4,6]); % column numbers in the data matrix that correspond to the independent variables
for t=1:T
t1=(t-1)*N+1;t2=t*N;
wx(t1:t2,:)=W*x(t1:t2,:);
end
xconstant=ones(N*T,1);
[nobs K]=size(x);
% ----------------------------------------------------------------------------------------
% No fixed effects + spatially lagged dependent variable
info.lflag=0; % required for exact results
info.model=0;
info.fe=0; % Do not print intercept and fixed effects; use info.fe=1 to turn on
% New routines to calculate effects estimates
results=sar_panel_FE(y,[xconstant x],W,T,info);
vnames=char('logcit','intercept','logp','logy');
% Print out coefficient estimates
prt_sp(results,vnames,1);
% Print out effects estimates
spat_model=0;
direct_indirect_effects_estimates(results,W,spat_model);
panel_effects_sar(results,vnames,W);
% ----------------------------------------------------------------------------------------
% No fixed effects + spatially lagged dependent variable + spatially
% independent variables
info.lflag=0; % required for exact results
info.model=0;
info.fe=0; % Do not print intercept and fixed effects; use info.fe=1 to turn on
% New routines to calculate effects estimates
results=sar_panel_FE(y,[xconstant x wx],W,T,info);
vnames=char('logcit','intercept','logp','logy','W*logp','W*logy');
% Print out coefficient estimates
prt_sp(results,vnames,1);
% Print out effects estimates
spat_model=1;
direct_indirect_effects_estimates(results,W,spat_model);
panel_effects_sdm(results,vnames,W);
% ----------------------------------------------------------------------------------------
% Spatial fixed effects + spatially lagged dependent variable
info.lflag=0; % required for exact results
info.model=1;
info.fe=0; % Do not print intercept and fixed effects; use info.fe=1 to turn on
% New routines to calculate effects estimates
results=sar_panel_FE(y,x,W,T,info);
vnames=char('logcit','logp','logy');
% Print out coefficient estimates
prt_sp(results,vnames,1);
% Print out effects estimates
spat_model=0;
direct_indirect_effects_estimates(results,W,spat_model);
panel_effects_sar(results,vnames,W);
% ----------------------------------------------------------------------------------------
% Spatial fixed effects + spatially lagged dependent variable + spatially
% independent variables
info.lflag=0; % required for exact results
info.model=1;
info.fe=0; % Do not print intercept and fixed effects; use info.fe=1 to turn on
% New routines to calculate effects estimates
results=sar_panel_FE(y,[x wx],W,T,info);
vnames=char('logcit','logp','logy','W*logp','W*logy');
% Print out coefficient estimates
prt_sp(results,vnames,1);
% Print out effects estimates
spat_model=1;
direct_indirect_effects_estimates(results,W,spat_model);
panel_effects_sdm(results,vnames,W);
% ----------------------------------------------------------------------------------------
% Time period fixed effects + spatially lagged dependent variable
info.lflag=0; % required for exact results
info.model=2;
info.fe=0; % Do not print intercept and fixed effects; use info.fe=1 to turn on
% New routines to calculate effects estimates
results=sar_panel_FE(y,x,W,T,info);
vnames=char('logcit','logp','logy');
% Print out coefficient estimates
prt_sp(results,vnames,1);
% Print out effects estimates
spat_model=0;
direct_indirect_effects_estimates(results,W,spat_model);
panel_effects_sar(results,vnames,W);
% ----------------------------------------------------------------------------------------
% Time period fixed effects + spatially lagged dependent variable + spatially
% independent variables
info.lflag=0; % required for exact results
info.model=2;
info.fe=0; % Do not print intercept and fixed effects; use info.fe=1 to turn on
% New routines to calculate effects estimates
results=sar_panel_FE(y,[x wx],W,T,info);
vnames=char('logcit','logp','logy','W*logp','W*logy');
% Print out coefficient estimates
prt_sp(results,vnames,1);
% Print out effects estimates
spat_model=1;
direct_indirect_effects_estimates(results,W,spat_model);
panel_effects_sdm(results,vnames,W);
% ----------------------------------------------------------------------------------------
% Spatial and time period fixed effects + spatially lagged dependent variable
info.lflag=0; % required for exact results
info.model=3;
info.fe=0; % Do not print intercept and fixed effects; use info.fe=1 to turn on
% New routines to calculate effects estimates
results=sar_panel_FE(y,x,W,T,info);
vnames=char('logcit','logp','logy');
% Print out coefficient estimates
prt_sp(results,vnames,1);
% Print out effects estimates
spat_model=0;
direct_indirect_effects_estimates(results,W,spat_model);
panel_effects_sar(results,vnames,W);
% ----------------------------------------------------------------------------------------
% Spatial and time period fixed effects + spatially lagged dependent variable + spatially
% independent variables
% No bias correction
info.bc=0;
info.lflag=0; % required for exact results
info.model=3;
info.fe=0; % Do not print intercept and fixed effects; use info.fe=1 to turn on
% New routines to calculate effects estimates
results=sar_panel_FE(y,[x wx],W,T,info);
vnames=char('logcit','logp','logy','W*logp','W*logy');
% Print out coefficient estimates
prt_sp(results,vnames,1);
% Print out effects estimates
spat_model=1;
direct_indirect_effects_estimates(results,W,spat_model);
panel_effects_sdm(results,vnames,W);
% Wald test for spatial Durbin model against spatial lag model
btemp=results.parm;
varcov=results.cov;
Rafg=zeros(K,2*K+2);
for k=1:K
Rafg(k,K+k)=1; % R(1,3)=0 and R(2,4)=0;
end
Wald_spatial_lag=(Rafg*btemp)'*inv(Rafg*varcov*Rafg')*Rafg*btemp
prob_spatial_lag=1-chis_cdf (Wald_spatial_lag, K) % probability greater than 0.05 points to insignificance
% LR test spatial Durbin model against spatial lag model (requires
% estimation results of the spatial lag model to be available)
resultssar=sar_panel_FE(y,x,W,T,info);
LR_spatial_lag=-2*(resultssar.lik-results.lik)
prob_spatial_lag=1-chis_cdf (LR_spatial_lag,K) % probability greater than 0.05 points to insignificance
% Wald test spatial Durbin model against spatial error model
R=zeros(K,1);
for k=1:K
R(k)=btemp(2*K+1)*btemp(k)+btemp(K+k); % k changed in 1, 7/12/2010
% R(1)=btemp(5)*btemp(1)+btemp(3);
% R(2)=btemp(5)*btemp(2)+btemp(4);
end
Rafg=zeros(K,2*K+2);
for k=1:K
Rafg(k,k) =btemp(2*K+1); % k changed in 1, 7/12/2010
Rafg(k,K+k) =1;
Rafg(k,2*K+1)=btemp(k);
% Rafg(1,1)=btemp(5);Rafg(1,3)=1;Rafg(1,5)=btemp(1);
% Rafg(2,2)=btemp(5);Rafg(2,4)=1;Rafg(2,5)=btemp(2);
end
Wald_spatial_error=R'*inv(Rafg*varcov*Rafg')*R
prob_spatial_error=1-chis_cdf (Wald_spatial_error,K) % probability greater than 0.05 points to insignificance
% LR test spatial Durbin model against spatial error model (requires
% estimation results of the spatial error model to be available
resultssem=sem_panel_FE(y,x,W,T,info);
LR_spatial_error=-2*(resultssem.lik-results.lik)
prob_spatial_error=1-chis_cdf (LR_spatial_error,K) % probability greater than 0.05 points to insignificance 复制代码