1735 4

[数据管理求助] DID中diff相关问题 [推广有奖]

  • 1关注
  • 0粉丝

本科生

16%

还不是VIP/贵宾

-

威望
0
论坛币
0 个
通用积分
15.5748
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
846 点
帖子
61
精华
0
在线时间
46 小时
注册时间
2022-10-8
最后登录
2024-4-17

楼主
努力学习stata~ 发表于 2022-12-18 23:57:51 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
求助大佬,为什么此时控制组在政策实施后的个体为0?是因为在此之前我所设定的treat和post变量有误吗?检查了好几遍也没有发现错误,想了一个多小时了
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Diff DID DIF IFF treat

DID中diff命令后控制组after为0.png (47.54 KB)

DID中diff命令后控制组after为0.png

沙发
xingxf 发表于 2022-12-21 08:40:06
你只给一个DID的结果,没人能帮你检查出问题。你得把具体的研究问题描述出来,数据给出来。帮你查命令是不是有问题,你得把你的命令写出来啊。

藤椅
原来不如此 发表于 2022-12-21 15:19:14
除了命令,可能还要看看你的数据(至少一小部分代表性数据),还有变量treat和post你是怎么定义的

板凳
静能生慧~ 发表于 2023-1-2 14:42:43
很有可能是treat post设定有问题

报纸
努力学习stata~ 发表于 2023-6-6 22:16:51
  1. cd "D:\stata data\Course paper"

  2. import excel "Annual data of 30 provinces (excluding Inner Mongolia)" ,clear sheet(Sheet1) firstrow
  3. destring , replace
  4. save 30 , replace //将第一张Excel转换为dta数据格式

  5. import excel "30个省成为自贸区时间" ,clear sheet(Sheet1) firstrow
  6. destring , replace
  7. merge 1:m region using "30.dta"
  8. sort region year
  9. keep if _merge == 3
  10. count if _merge == 3
  11. drop _merge
  12. save 30+21 , replace //合并两张Excel表并转换为dta数据格式

  13. cd "D:\stata data\Course paper"
  14. use "30+21.dta" , clear //调用数据
  15. des2 //查看数据类型等信息

  16. generate treat = 0
  17. replace treat = 1 if time != 0

  18. generate post = 0
  19. replace post = 1 if (year >= time) * (time != 0)

  20. generate did = treat * post

  21. encode region, gen(Region)

  22. order Region region year time treat post did

  23. fsum, s(mean sd p50 min max)  //描述性统计

  24. local vars "GDP first_in second_in third_in permanent_population enterprise_number total_import_export  road consume"
  25. foreach v of varlist `vars'{
  26.         generate ln_`v' = ln(`v')
  27. }

  28. fsum ln_* , s(mean sd p50 min max)  //描述性统计

  29. global c1 "first_in enterprise_number total_import_export road employment_urban "

  30. global c2 "ln_first_in ln_second_in ln_third_in ln_permanent_population ln_enterprise_number ln_total_import_export ln_road ln_consume employment_urban fiscal_expenditure rail fiscal_revenue CPI PPI"

  31. *描述性统计表格
  32. help sum2docx
  33. sum GDP  first_in second_in third_in permanent_population employment_urban fiscal_expenditure enterprise_number total_import_export road rail fiscal_revenue consume CPI PPI
  34. sum2docx GDP did first_in second_in third_in permanent_population employment_urban fiscal_expenditure enterprise_number total_import_export road rail fiscal_revenue consume CPI PPI using sum.docx, replace stats(N mean(%9.0f) sd(%9.0g) min(%9.0g) median(%9.0g) max(%9.0g)) title("Descriptive statistics")

  35. *相关性分析表格
  36. help corr2docx
  37. corr2docx GDP  first_in second_in third_in permanent_population employment_urban fiscal_expenditure enterprise_number total_import_export road rail fiscal_revenue consume CPI PPI  using corr.docx, replace star   spearman(ignore)

  38. *回归表格
  39. help reg2docx
  40. reg GDP did
  41. est        store r1
  42. reg GDP did first_in
  43. est        store r2
  44. reg GDP did first_in enterprise_number
  45. est        store r3
  46. reg GDP did first_in enterprise_number total_import_export
  47. est        store r4
  48. reg GDP did first_in enterprise_number total_import_export road
  49. est        store r5
  50. reg GDP did first_in enterprise_number total_import_export road employment_urban
  51. est        store r6
  52. *产业结构、规模企业、对外贸易、交通运输、人力资源
  53. reg2docx r1 r2 r3 r4 r5 r6  using reg1.docx, replace scalars(N r2(%9.3f) r2_a(%9.2f))  b(%9.2f) t(%7.2f) title(table1: OLS regression results)  noconstant

  54. *两期DID分析
  55. reg GDP did treat post , r
  56. reg GDP did treat post $c1, r
  57. xtset Region year
  58. xtreg GDP did treat post $c1 , fe r
  59. reghdfe GDP did treat post $c1 , absorb(i.year Region)
  60. diff GDP , t(treat) p(post) cov($c1)

  61. *多期DID分析
  62. help outreg2

  63. reg GDP did $c1 i.Region i.year  ,vce(cluster Region)
  64. outreg2  using reg2,word replace stats(coef tstat)   adjr2 addtext("Year", "YES", "Region","YES" , "Cluster","YES" )  keep(did $c1)
  65. *在Region和year层面进行固定效应分析,在Region层面进行聚类稳健分析
  66. xtset Region year
  67. xtreg GDP did  $c1 i.year , fe vce(cluster Region)
  68. outreg2  using reg2,word append  stats(coef tstat) addstat("F-value", e(F) ) adjr2 addtext("Year", "YES", "Region","NO" , "Cluster","YES") keep(did $c1)
  69. *xtreg相比reg而言,该回归命令可以估计出更多参数
  70. reghdfe GDP did $c1 , absorb( Region year ) vce(cluster Region)
  71. outreg2  using reg2,word append  stats(coef tstat) addstat("F-value", e(F) ) adjr2 addtext("Year", "YES", "Region","YES" , "Cluster","YES") keep(did $c1)
复制代码


代码如上,不知道如何展现数据,部分数据为

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-29 06:16