楼主: Karenliai
9699 1

[其他] [求助] Xtreg: Random-effects GLS regression的分析 [推广有奖]

  • 0关注
  • 0粉丝

学前班

50%

还不是VIP/贵宾

-

威望
0
论坛币
10 个
通用积分
0
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
20 点
帖子
1
精华
0
在线时间
1 小时
注册时间
2011-7-8
最后登录
2011-7-10

楼主
Karenliai 发表于 2011-7-8 23:37:55 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
我的论文导师让我用XTREG做,我做出了Random-effects GLS regression的表,其中只有2个解释变量的P-value小于0.1, 其他4个都大于0.1小于1.请问这种结果正常吗?我是需要替换掉其他四个变量?还是这结果说明那4个变量在不同国家有差异?因为我做的是不同国家的对比。请问Random-effects GLS regression的结果大致怎样分析。谢谢~
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:regression regressio effects regress Effect 国家 论文

沙发
lyngqng 发表于 2011-7-9 16:05:29
The results of random effect and fix effects are very similar, the only difference lies in the analysis of each particular effect, i.e. time effect, or panel effect, or population effect.

2个解释变量的P-value小于0.1, 其他4个都大于0.1小于1. is obviously not a good model.

The best thing you have to do at this stage is to identify why the result is crampy: is it because of missing variable bias? is it heteroscedasticity? How about the specification errors? Do you understand your data well? i.e. data size, causality relationship between variables.

It is dangerous to apply the model directly without testing the assumptions. Try to start by testing the assumptions, i.e. (xi,yi) i.i.d. , error term to be white noise. Though these are the basic things, it might lead you to the conclusion that your OLS produces the best results.

Modeling is tedious and arduous, but you will learn a lot by asking yourself questions along the way toward a satisfactory model. In my observation, no matter how crampy the data is, there is definitely a model there. Please take your time.

Best of the luck.

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2026-1-1 19:25