解
由于\[\begin{align*}\displaystyle\sum_{n=1}^{\infty }\frac{1}{(n+1)}x^{n}
&=\frac{1}{x}\displaystyle\sum_{n=1}^{\infty }\frac{1}{(n+1)}x^{n+1} \\
&=\frac{1}{x}\int\limits(\displaystyle\sum_{n=1}^{\infty }\frac{1}{(n+1)}x^{n+1})'dx \\
&=\frac{1}{x}\int\limits\displaystyle\sum_{n=1}^{\infty }x^{n}dx \\
&=\frac{1}{x}\int\limits\frac{x}{(1-x)}dx \\
&=\frac{1}{x}[x-\ln(1-x)] .
\end{align*}\]令$x=\frac{1}{2}$,代入上式,得\[\displaystyle\sum_{n=1}^{\infty }\frac{1}{(n+1)2^n}=1+2\ln2.\]


雷达卡
京公网安备 11010802022788号







