证明 \[\because \varphi (y)=\int_{a}^{+\infty }f(x,y)dx在y\in [c,d]上一致收敛,\]\[\therefore \forall \varepsilon > 0,\exists A> 0,|\int_{A}^{+\infty }f(x,y)dx|< \frac{\varepsilon }{3}.\]\[对于y,y_0\in [a,+\infty),\delta > 0,0< |y-y_0|< \delta ,s.t.\]\[|\int_{a}^{A}f(x,y)dx-\int_{a}^{A}f(x,y_0)dx|\le \int_{a}^{A}|f(x,y)dx-f(x,y_0)|dx< \frac{\varepsilon }{3}.\]因此\[\begin{align*}|\varphi (y)-\varphi (y_0)|
&=|\int_{a}^{A}f(x,y)dx+\int_{A}^{+\infty }f(x,y)dx-\int_{a}^{A}f(x,y_0)dx-\int_{A}^{+\infty }f(x,y_0)dx| \\
&\le |\int_{a}^{A}f(x,y)dx-\int_{a}^{A}f(x,y_0)dx|+ |\int_{A}^{+\infty }f(x,y)dx|+|\int_{A}^{+\infty }f(x,y_0)dx| \\
&<\frac{\varepsilon }{3}+\frac{\varepsilon }{3}+\frac{\varepsilon }{3} \\
&=\varepsilon .
\end{align*}\] 而由$y_0$的任意性,可知$\varphi (y)\in C[c,d] .$


雷达卡


京公网安备 11010802022788号







