解 由积分面的称性和被积函数是奇函数,所以有\[\iint\limits_{S}(xy+yz)dS=0.\]由$z=\sqrt{x^2+y^2}$,投影到$xoy$平面上.\[dS=\sqrt{1+\frac{x^2}{x^2+y^2}+\frac{y^2}{x^2+y^2}}dxdy=\sqrt{2}dxdy.\]\[\begin{align*}I
&=\iint\limits_{S}(xy+yz+zx)dS \\
&=\iint\limits_{S}zxdS \\
&=\sqrt{2}\iint\limits_{D_{}xoy}x\sqrt{x^2+y^2}dxdy \\
&=\sqrt{2}\int_{-\frac{\pi }{2}}^{\frac{\pi }{2}}d\theta \int_{0}^{2a\cos \theta } r^3dr,(极坐标变换)\\
&=8\sqrt{2}a^4 \int_{0}^{\frac{\pi }{2}}\cos ^4\theta d\theta\\
&=8\sqrt{2}a^4 \frac{3}{4}\frac{1}{2}\frac{\pi }{2}\\
&=\frac{\sqrt{2}}{2}\pi a^4.
\end{align*}\]


雷达卡
京公网安备 11010802022788号







