证明
由于有\[|f_n(x_n)-f(c)|\le |f_n(x_n)-f(x_n)|+|f(x_n)-f(c)|\]而\[\because f_n(x_n)\implies f(x_n),\]\[\therefore \forall \varepsilon > 0,|f_n(x_n)-f(x_n)|< \frac{\varepsilon }{2}.\]又\[\because \lim_{n\to\infty }x_n=c.\]\[\therefore \exists \varepsilon > 0,x_n,c\in [a,b],\delta > 0,|x_n-c|< \delta ,s.t.\]\[|f(x_n)-f(c)|< \frac{\varepsilon }{2}.\]因此\[|f_n(x_n)-f(c)|\le |f_n(x_n)-f(x_n)|+|f(x_n)-f(c)|= \frac{\varepsilon }{2}+ \frac{\varepsilon }{2}=\varepsilon .\]


雷达卡
京公网安备 11010802022788号







