楼主: caifeifei
2436 2

[文献讨论] 关于同质产品Bertrand Competition推广到N家企业的均衡问题 [推广有奖]

  • 0关注
  • 0粉丝

初中生

33%

还不是VIP/贵宾

-

威望
0
论坛币
365 个
通用积分
0
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
177 点
帖子
7
精华
0
在线时间
19 小时
注册时间
2006-1-23
最后登录
2025-5-18
毕业学校
南京师范大学

楼主
caifeifei 发表于 2011-9-14 15:49:56 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
正在准备学校的考试,有一题很有疑惑,拿出来请教一下各位高人:

Consider Bertrand's oligopoly game (the case of homogenous goods) when the cost and demand functions are as discussed in the class and there are n firms, with n>=3. Show tat the set of Nash Equlibria is the set of profiles (p1,...,pn) of prices for which pi>=c for all i and ar least two prices are equal to c.

目前已知的是:
对于Homogenous good其Betrand函数为
Demand i (pi,pj)= Demand (pi) = a - pi          if pi<pj
                            Demand (pi)/2                   if pi=pj
                             0                                       if pi>pj
请问如何求证题目中得:至少存在两个企业的价格等于c?
谢谢!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Competition bertrand Bertran Petit comp demand least 产品 推广 如何

沙发
vesperw 发表于 2011-9-16 03:52:16
1. obviously any pi<c cannot be optimal, so it must be pi>=c for all i
2. suppose pi>c for all i, any i can unilateral deviate to pi=min pj (j=/=i) -epsilon , for small epsilon >0, i will be able to capture all the profit in the market, hence pi>c for all i is not a NE . Because of 2, in any NE, there must be an i with pi=c.
3. if pj>c for all j=/=i, and pi=c, i can unilaterally deviate to set pi=min pj (j=/=i) -epsilon , for small epsilon >0, to increase his profit from 0 to strictly positive amount. Deviation is profitable, so this is not a NE. Because of this, in any NE, there must be at least two firms charging c, and pi>=c for any other i
4. lastly prove the stated strategy profile is a NE....

藤椅
caifeifei 发表于 2011-9-20 06:45:10
vesperw 发表于 2011-9-15 20:52
1. obviously any pi=c for all i
2. suppose pi>c for all i, any i can unilateral deviate to pi=min p ...
多謝解答! 很詳細,很有邏輯!

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-31 16:16