多目标差分进化算法的改进研究
在学术研究和工程实践当中存在许多多目标优化问题,不同于单目标优化问题,多目标优化问题由于各个目标之间相互制约,很难让所有的优化目标同时达到最优。因此,只能对各个目标进行协调以寻求折中最优解。
加之多目标优化问题大多具有高维、多峰、不连续等特性,故而给多目标问题的求解增添了许多难度。差分进化(Differential Evolution,DE)算法作为目前最优秀的智能优化算法之一,具有操作简单、可控参数少、收敛速度快、全局搜索能力强等特点,大量实验数据表明,差分进化算法在处理多目标优化问题上表现出非常显著的效果,现已被广泛使用在图像处理、生产调动、神经网络、故障诊断等诸多领域当中。
然而,DE算法和其他进化算法一样,在对高维、多峰、多目标等复杂的问题进行优化时仍不可避免地存在早熟、停滞等问题。本课题对DE算法进行系统的研究和分析,针对其探索和开发能力之间存在的矛盾。
从算法的结构和关键步骤,如变异操作、交叉操作等多方面入手,进行了深入分析和大量的实验仿真,最后提出了两个改进的方案,使其在收敛速度和精度上都得到大幅度提升,在处理复杂高维多峰问题上有了很明显的改 ...


雷达卡




京公网安备 11010802022788号







