楼主: 草莓奶茶
25525 8

[学习资料] 主成分分析法的相关系数矩阵不是正定阵,不出现KMO检验,怎么回事? [推广有奖]

  • 0关注
  • 2粉丝

已卖:57份资源

副教授

42%

还不是VIP/贵宾

-

威望
0
论坛币
29 个
通用积分
0
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
45763 点
帖子
398
精华
0
在线时间
381 小时
注册时间
2011-7-3
最后登录
2016-8-10

楼主
草莓奶茶 发表于 2012-3-29 15:50:58 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
主成分分析法的相关系数矩阵不是正定阵,不出现KMO检验,怎么回事?多多指教!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:主成分分析法 相关系数矩阵 主成分分析 kmo检验 相关系数 分析法 正定 主成分分析法 皮尔逊相关系数 spss主成分分析 逐步回归分析 多元回归分析 因子分析法 应用时间序列分析 偏相关系数 pearson相关系数 相关系数检验 spearman相关系数 复相关系数 相关系数矩阵

回帖推荐

ReneeBK 发表于9楼  查看完整内容

Problem Subject: FACTOR does not print KMO or Bartlett test for Nonpositive Definite Matrices Problem Description: I have run the SPSS FACTOR procedure with principal components analysis (PCA) as the extraction method. I requested the Kaiser-Mayer-Olkin (KMO) measure of sample adequacy and the Bartlett test of sphericity but neither of these measures was printed. The "Communalities", "Total V ...

本帖被以下文库推荐

沙发
wobushita 发表于 2012-3-29 16:01:08
可能是你的样本数少于变量数!
增加样本!
可爱可爱就是可爱啦~~~~

藤椅
kuangsir6 发表于 2012-3-29 18:59:29
其中有特征根小于等于0的情况出现。
变量之间相关性太高或者样本量太少。

板凳
kuangsir6 发表于 2012-3-29 19:35:00
变量间的相关系数接近1时,就会出现不输出KMO的情况

报纸
staticor 在职认证  发表于 2012-3-29 23:46:05
先做共线性   或者做 Pair-correlation 的散点图 找出高度线性相关的配对变量
然后进行删减变量

地板
草莓奶茶 发表于 2012-4-2 09:42:46
谢谢大家的回复,长知识了。呵呵!

7
最后的守护者 发表于 2012-5-17 14:43:37
草莓奶茶 发表于 2012-4-2 09:42
谢谢大家的回复,长知识了。呵呵!
我想知道你最后怎么解决的呢,我也遇到了同样的问题

8
shuangbao08 发表于 2014-4-10 15:57:08
我也遇到这类问题了。

9
ReneeBK 发表于 2014-4-11 09:23:10
Problem Subject:  FACTOR does not print KMO or Bartlett test for Nonpositive Definite Matrices

Problem Description:  I have run the SPSS FACTOR procedure with principal components analysis (PCA) as the extraction method. I requested the Kaiser-Mayer-Olkin (KMO) measure of sample adequacy and the Bartlett test of sphericity but neither of these measures was printed. The "Communalities", "Total Variance Explained" and "Component Matrix" tables were printed. Why was my request for KMO and Bartlett's sphericity test ignored?

Resolution Subject: KMO, Bartlett's sphericity, and anti-image correlation not printed for nonpositive definite matrices

Resolution Description:
It is likely the case that your correlation matrix is nonpositive definite (NPD), i.e., that some of the eigenvalues of your correlation matrix are not positive numbers. If this is the case, there will be a footnote to the correlation matrix that states "This matrix is not positive definite." Even if you did not request the correlation matrix as part of the FACTOR output, requesting the KMO or Bartlett test will cause the title "Correlation Matrix" to be printed. The footnote will be printed under this title if the correlation matrix was not requested. An NPD matrix will also result in suppression of other output from the 'Descriptives' dialog of the Factor dialog, namely the inverse of the correlation matrix, the anti-image correlation matrix, and the significance values for the correlations. If you had requested a factor extraction method other than PCA or unweighted least squares (ULS), an NPD matrix would have caused the procedure to stop without further analysis.

Matrices can be NPD as a result of various other properties. A correlation matrix will be NPD if there are linear dependencies among the variables, as reflected by one or more eigenvalues of 0. For example, if variable X12 can be reproduced by a weighted sum of variables X5, X7, and X10, then there is a linear dependency among those variables and the correlation matrix that includes them will be NPD. If there are more variables in the analysis than there are cases, then the correlation matrix will have linear dependencies and be NPD. Remember that FACTOR uses listwise deletion of cases with missing data by default. If you had more cases in the file than variables in the analysis but also had many missing values, listwise deletion could leave you with more variables than retained cases. Pairwise deletion of missing data can also lead to NPD matrices. Negative eigenvalues may be present in these situations. See the following chapter for a helpful discussion and illustration of!
  how this
can happen.

Wothke, W. (1993) Nonpositive definite matrices in structural modeling. In K.A. Bollen & J.S. Long (Eds.), Testing Structural Equation Models. Newbury Park NJ: Sage. (Chap. 11, pp. 256-293).

Elements of the KMO and Bartlett test statistic can not be calculated if the correlation matrix is NPD. See the formulae for these statistics in the current Statistical Algorithms documentation by clicking Help->Algorithms in SPSS, then scrolling down to the link for Factor Algorithms. Then click the link for Optional Statistics. . The formulae are also on page 20 of the Factor chapter at
http://support.spss.com/ProductsExt/SPSS/Documentation/Statistics/algorithms/14.0/factor.pdf

The Bartlett formula includes the log of the determinant of the correlation matrix. If there are linear dependencies, then the determinant of the matrix will be 0 and its log will be undefined. The KMO measure formula includes elements of the anti-image covariance matrix, whose calculation involves the inverse of the correlation matrix. If the correlation matrix has linear dependencies, then its inverse can not be computed.

Apart from the inability to print the KMO or Bartlett's test, the presence of an NPD correlation matrix may lead you to rethink the choice of variables or attempt to acquire data on a larger sample to achieve more reliable results.
David Matheson
SPSS Statistical Support
已有 1 人评分经验 论坛币 收起 理由
bakoll + 3 + 3 精彩帖子

总评分: 经验 + 3  论坛币 + 3   查看全部评分

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2025-12-31 02:57