楼主: fsaasdfs~
129 0

[学习资料] 不确定随机网络优化 [推广有奖]

  • 0关注
  • 10粉丝

已卖:2142份资源
好评率:99%
商家信誉:一般

博士生

21%

还不是VIP/贵宾

-

威望
0
论坛币
350 个
通用积分
2582.6754
学术水平
6 点
热心指数
6 点
信用等级
5 点
经验
-6042 点
帖子
0
精华
0
在线时间
526 小时
注册时间
2012-8-29
最后登录
2026-1-30

楼主
fsaasdfs~ 发表于 2025-2-18 17:37:10 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
不确定随机网络优化
在许多实际问题中,我们得到的信息通常是非决定性的.这些非决定性的信息有些表现为随机性,有些表现为不确定性.在研究网络优化问题时,必须对这些非决定信息加以考虑.如果网络中边的权重是随机变量,那么就得到一个随机网络;如果网络中边的权重是不确定变量,那么就得到一个不确定网络.在一个复杂网络中,不确定性和随机性可能同时存在,这样的网络称为不确定随机网络.在求解这类网络优化问题时,经典网络的一些算法、随机网络以及不确定网络的优化方法,都难以解决这样的复杂情形.因此寻找新的合适的方法解决不确定随机网络优化问题是十分必要的.本文利用机会理论,对不确定随机网络优化的最短路问题、最小生成树问题以及最大流问题进行研究.首先推导出了它们的理想机会分布函数.然后对最短路问题建立了路径的机会分布函数与理想分布函数的面积最小模型、距离最小模型和最小互熵模型;对最小生成树问题建立了生成树的机会分布函数与理想分布函数的面积最小模型、距离最小模型和最小互熵模型;对最大流问题建立了期望值约束模型和机会约束模型.最后给出优化模型的数值实验,并设计相应的算法程序,验证了模型和算法的有效性.本文的创新点主要 ...
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:网络优化 不确定 最小生成树 分布函数 不确定性

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-31 08:15