秦 九 韶
计算多项式f(x) =x5+x4+x3+x2+x+1当x = 5值
算法1:
因为f(x) =x5+x4+x3+x2+x+1
所以f(5)=55+54+53+52+5+1
=3125+625+125+25+5+1
= 3906
算法2:
f(5)=55+54+53+52+5+1
=5×(54+53+52+5+1) +1
=5×(5×(53+52+5 +1 )+1 ) +1
=5×(5×( 5× (52+5 +1) +1 )+1 ) +1
=5×(5×( 5× (5 × (5 +1 ) +1 ) +1 )+1 ) +1
分析:两种算法中各用了几次乘法运算?和几次加法运算?


雷达卡




京公网安备 11010802022788号







