楼主: 352693585
1761 3

[学科前沿] Discrete distributions Applications in the Health Sciences.pdf [推广有奖]

已卖:6111份资源

院士

42%

还不是VIP/贵宾

-

威望
1
论坛币
273386 个
通用积分
51.7908
学术水平
132 点
热心指数
157 点
信用等级
104 点
经验
17932 点
帖子
2133
精华
2
在线时间
2082 小时
注册时间
2012-1-11
最后登录
2025-11-14

楼主
352693585 发表于 2012-10-2 11:00:32 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Discrete distributions Applications in the Health Sciences.pdf (1.21 MB, 需要: 100 个论坛币)
Daniel Zelterman
John Wiley & Sons, 2005-10-18 - 306 页

There have been many advances in the theory and applications of discrete distributions in recent years. They can be applied to a wide range of problems, particularly in the health sciences, although a good understanding of their properties is very important. Discrete Distributions: Applications in the Health Sciences describes a number of new discrete distributions that arise in the statistical examination of real examples. For each example, an understanding of the issues surrounding the data provides the motivation for the subsequent development of the statistical models.
  • Provides an overview of discrete distributions and their applications in the health sciences.
  • Focuses on real examples, giving readers an insight into the utility of the models.
  • Describes the properties of each distribution, and the methods that led to their development.
  • Presents a range of examples from the health sciences, including cancer, epidemiology, and demography.
  • Features discussion of software implementation – in SAS, Fortran and R – enabling readers to apply the methods to their own problems.
  • Written in an accessible style, suitable for applied statisticians and numerate health scientists.
  • Software and data sets are made available on the Web.
Discrete Distributions: Applications in the Health Sciences provides a practical introduction to these powerful statistical tools and their applications, suitable for researchers and graduate students from statistics and biostatistics. The focus on applications, and the accessible style of the book, make it an excellent practical reference source for practitioners from the health sciences.



Contents
Preface xi
Acknowledgements xvii
About the Author xix
1 Introduction 1
1.1 DiscreteDistributionsinGeneral .................. 1
1.2 Multivariate Discrete Distributions . . . . . . . . . . . . . . . . . . 4
1.3 BinomialDistribution......................... 5
1.4 TheMultinomialDistribution .................... 8
1.5 PoissonDistribution ......................... 10
1.6 NegativeBinomialDistribution ................... 13
1.7 HypergeometricDistribution..................... 17
1.7.1 Negative hypergeometric distribution . . . . . . . . . . . . 19
1.7.2 Extended hypergeometric distribution . . . . . . . . . . . . 20
1.8 Stirling’sApproximation....................... 23
2 Maximum Negative Binomial Distribution 25
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.1.1 Outfitting the ark . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.2 Medicalscreeningapplication................ 30
2.2 ElementaryProperties ........................ 33
2.2.1 Shapesofthedistribution .................. 34
2.2.2 Momentsofthedistribution................. 36
2.2.3 Modesofthedistribution .................. 38
2.3 AsymptoticApproximations ..................... 39
2.3.1 Large values of c and p = 1/2.............. 40
2.3.2 Large values of c and p = 1/2 .............. 42
2.3.3 Extreme values of p ..................... 43
2.4 Estimation of p ........................... 44
2.4.1 The likelihood function . . . . . . . . . . . . . . . . . . . 45
2.4.2 TheEMestimate....................... 49
2.4.3 A Bayesian estimate of p .................. 52
2.5 ProgramsandNumericalResults................... 53
2.6 Appendix: The Likelihood Kernel . . . . . . . . . . . . . . . . . . 55
3 The Maximum Negative Hypergeometric Distribution 57
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2 TheDistribution ........................... 60
3.3 PropertiesandApproximations.................... 61
3.3.1 Modesofthedistribution .................. 65
3.3.2 Agammaapproximation................... 66
3.3.3 A half-normal approximation . . . . . . . . . . . . . . . . 67
3.3.4 Anormalapproximation................... 68
3.4 Estimation............................... 68
3.5 Appendix ............................... 72
3.5.1 The half-normal approximation . . . . . . . . . . . . . . . 72
3.5.2 The normal approximate distribution . . . . . . . . . . . . 73
4 Univariate Discrete Distributions for Use with Twins 77
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 The Univariate Twins Distribution . . . . . . . . . . . . . . . . . . 80
4.3 MeasuresofAssociationinTwins.................. 84
4.4 TheDanishTwinRegistry ...................... 88
4.4.1 Estimateoftheeffect .................... 90
4.4.2 Approximations ....................... 92
4.5 Appendix ............................... 93
4.5.1 The univariate twins distribution . . . . . . . . . . . . . . 93
4.5.2 Approximating distributions . . . . . . . . . . . . . . . . . 94
4.6 Programs for the Univariate Twins Distribution . . . . . . . . . . . 97
5 Multivariate Distributions for Twins 103
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2 Conditional Distributions . . . . . . . . . . . . . . . . . . . . . . . 105
5.2.1 Univariate conditional distribution . . . . . . . . . . . . . . 105
5.2.2 Conditional association measure . . . . . . . . . . . . . . . 109
5.3 Conditional inference for the Danish twins . . . . . . . . . . . . . 111
5.4 Simultaneous Multivariate Distributions . . . . . . . . . . . . . . . 115
5.5 Multivariate Examination of the Twins . . . . . . . . . . . . . . . 118
5.6 Infinitesimal Multivariate Methods . . . . . . . . . . . . . . . . . . 119
5.6.1 Models with no dependence . . . . . . . . . . . . . . . . . 120
5.6.2 Modelsfordependence ................... 121
5.6.3 Theinfinitesimaldata .................... 124
5.7 ComputerPrograms.......................... 125
5.7.1 Conditional distribution and association models in SAS . . 125
5.7.2 Fortran program for multivariate inference . . . . . . . . . 132
6 Frequency Models for Family Disease Clusters 141
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.1.1 Examples........................... 143
6.1.2 Sampling methods employed . . . . . . . . . . . . . . . . 146
6.1.3 Incidenceandclustering................... 147
6.2 Exact Inference Under Homogeneous Risk . . . . . . . . . . . . . 148
6.2.1 Enumerationalgorithm.................... 151
6.2.2 Ascertainmentsampling ................... 152
6.3 NumericalExamples ......................... 153
6.3.1 IPF in COPD families . . . . . . . . . . . . . . . . . . . . 153
6.3.2 Childhood cancer syndrome . . . . . . . . . . . . . . . . . 154
6.3.3 Childhood mortality in Brazil . . . . . . . . . . . . . . . . 155
6.3.4 Household T. cruziinfections ................ 156
6.4 Conclusions.............................. 157
6.5 Appendix:MathematicalDetails................... 158
6.5.1 The distribution of family frequencies . . . . . . . . . . . 158
6.5.2 Amodelforcovariates.................... 160
6.5.3 Ascertainmentsampling ................... 161
6.6 Program for Exact Test of Homogeneity . . . . . . . . . . . . . . 161
7 Sums of Dependent Bernoulli’s and Disease Clusters 173
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.2 ConditionalModels.......................... 176
7.2.1 General results for conditional models . . . . . . . . . . . 176
7.2.2 Familyhistorymodel .................... 179
7.2.3 Incrementalriskmodel.................... 183
7.2.4 The exchangeable, beta-binomial distribution . . . . . . . . 186
7.2.5 ApplicationtoIPFexample ................. 188
7.3 ExchangeableModels......................... 189
7.3.1 Exchangeable family history . . . . . . . . . . . . . . . . . 195
7.3.2 Exchangeable incremental risk model . . . . . . . . . . . . 200
7.4 Applications.............................. 203
7.5 Appendix: Proof of Exchangeable Distribution . . . . . . . . . . . 206
8 Weighted Binomial Distributions and Disease Clusters 209
8.1 WeightedModelsandClustering................... 209
8.2 TheAlthamDistribution ....................... 212
8.3 Application to Childhood Mortality Data . . . . . . . . . . . . . . 218
8.4 ALog-linearWeightedDistribution ................. 224
8.5 QuadraticWeightedDistributions .................. 227
8.6 WeightedDistributionsinGeneral.................. 230
8.7 FamilyHistoryLog-linearModel .................. 233
8.8 SummaryMeasuresandIPFExample................ 234
8.9 SASProgramforClusteredFamilyData .............. 235
9 Applications to Teratology Experiments 243
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
9.2 DominantLethalAssay........................ 246
9.3 Shell Toxicology Experiment . . . . . . . . . . . . . . . . . . . . . 250
9.4 Toxicologyof2,4,5T ........................ 255
Complements 265
References 267
Index 273
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:distribution Applications Application Discrete Sciences describes important although examples problems

本帖被以下文库推荐

沙发
jhmath(未真实交易用户) 在职认证  发表于 2012-10-3 12:16:13
too expensive!

藤椅
352693585(未真实交易用户) 发表于 2012-10-3 13:07:44
可以用经验兑换币
新浪微博Infinitely divisible(无穷可分)http://weibo.com/1692902863
科学网博客http://blog.sciencenet.cn/u/a3141592653589

板凳
suzhzh(真实交易用户) 发表于 2015-5-26 13:22:23
Thanks for sharing, but really it is too expensive.

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-29 17:52