楼主: zhongqhc
4316 7

SAS training course notes: Effective Web Mining:Attracting and Keeping Valued Cy [推广有奖]

  • 1关注
  • 1粉丝

已卖:1496份资源

博士生

76%

还不是VIP/贵宾

-

威望
0
论坛币
11408 个
通用积分
8.0435
学术水平
6 点
热心指数
7 点
信用等级
6 点
经验
5764 点
帖子
215
精华
0
在线时间
451 小时
注册时间
2005-4-30
最后登录
2023-8-15

楼主
zhongqhc 发表于 2007-5-23 05:40:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
详细介绍了如何用SAS/EM进行分析,独家发布.

119367.rar (10.16 MB, 需要: 30 个论坛币) 本附件包括:
  • effective_web_mining.pdf


Effective Web Mining:Attracting and Keeping Valued Cyber Consumers (632 pages)
Course Notes of CustomerRelationship Management Training
Using Data Mining for Customer Relationship Management Using SAS's award winning statistical, data mining and information delivery software you will learn how to build models that business users and campaign managers can utilize. For people new to CRM or business decision makers, the Customer Relationship Management Through Data Mining seminar provides a solid CRM background and high-level overview of how data mining techniques can be applied to acquire and retain customers. The curriculum includes courses detailing how to prepare, create models on, and analyze customer and web data.
Course Description
This course introduces data mining methodology for solving business problems arising from commercial use of the World Wide Web. Enterprise Miner™ software provides a foundation for Web mining projects.
Additional tools from other SAS products, including SAS/STAT® and SAS/ETS® software, are used to drive applications relevant to e-commerce. The course emphasizes business problems in e-commerce and illustrates the solution of these problems using predictive modeling techniques applied to Web log,transactional, marketing, and operational data.
Table of Contents
Course Description....................................................................................................................vii
Prerequisites ..............................................................................................................................viii
General Conventions ................................................................................................................... ix
Chapter 1 Introduction ........................................................................................... 1-1
1.1 Web Sites and Web Solutions ..........................................................................................1-3
1.2 A Selection of Business Pains........................................................................................1-22
1.3 A Collection of Data Mining Tools................................................................................1-31
1.4 Introduction to Predictive Modeling..............................................................................1-38
1.5 The Apache Web Server (Optional) ...............................................................................1-66
1.6 References.....................................................................................................................1-73
Chapter 2 Data ........................................................................................................ 2-1
2.1 Types of Data ...................................................................................................................2-3
2.2 Web Log Data ................................................................................................................2-44
2.3 Cookies and Other Data Collection Tools......................................................................2-71
2.4 Proactive Web Data Gathering: Bots and Intelligent Agents .........................................2-81
2.5 Data Preparation for Predictive Modeling .....................................................................2-91
2.6 Exercises ........................................................................................................................2-99
2.7 References....................................................................................................................2-100
Chapter 3 Knowing Your Customers .................................................................... 3-1
3.1 Web Site Statistics for Evaluating Visitors ......................................................................3-3
3.2 Introduction to Clustering and Segmentation ................................................................3-53
3.3 Customer Profiling.........................................................................................................3-79
3.4 Exercises ......................................................................................................................3-119
3.5 References....................................................................................................................3-120
Chapter 4 Attracting Cyber Consumers ............................................................... 4-1
4.1 Introduction to Web Site Marketing.................................................................................4-3
4.2 Evaluating Visitor Behavior...........................................................................................4-51
4.3 Evaluating Web Page Design .........................................................................................4-69
4.4 Comparing Your Web Site to Competitors...................................................................4-106
4.5 Exercises ......................................................................................................................4-113
4.6 References....................................................................................................................4-114
Chapter 5 Evaluating Cyber Consumers .............................................................. 5-1
5.1 Descriptive Techniques for Evaluating Buyer Behavior..................................................5-3
5.2 Estimating the Propensity to Buy ..................................................................................5-21
5.3 Estimating the Propensity to Abandon the Site..............................................................5-33
5.4 Model-Based Selection of Banner Ads ..........................................................................5-54
5.5 Exercises ........................................................................................................................5-75
5.6 References.....................................................................................................................5-76
Chapter 6 Keeping Cyber Consumers .................................................................. 6-1
6.1 Data Driven Service for Shopping Comparison Sites......................................................6-3
6.2 Introduction to Recommender Systems .........................................................................6-19
6.3 Recommender System Applications ..............................................................................6-27
6.4 Exercises ........................................................................................................................6-55
6.5 References.....................................................................................................................6-56
Appendix A Data....................................................................................................... A-1
A.1 Ad Campaign Data..........................................................................................................A-3
A.2 Banner Ad Data...............................................................................................................A-4
A.3 Buy Data and Abandon Data...........................................................................................A-6
A.4 Customers Data...............................................................................................................A-9
A.5 Direct Mail Data ........................................................................................................... A-11
A.6 Financial Services Data.................................................................................................A-13
A.7 Movie Data ...................................................................................................................A-15
A.8 Path Analysis Data ........................................................................................................A-18
A.9 Profile Data ...................................................................................................................A-19
A.10 Stochastic Process Data ................................................................................................A-21
A.11 Web Logs ......................................................................................................................A-22
A.12 Web Time Series Data...................................................................................................A-23
Appendix B SAS Programs ..................................................................................... B-1
B.1 The SAS System ............................................................................................................. B-3
B.2 Reading Web Log Files................................................................................................... B-9
B.3 A SAS Robot................................................................................................................. B-14
B.4 The Output Delivery System and HTML ..................................................................... B-21
B.5 Web Stats....................................................................................................................... B-23
B.6 Time Series Methods .................................................................................................... B-27
B.7 Analysis of Data from Designed Experiments.............................................................. B-30
B.8 Transition Probabilities for Stochastic Processes.......................................................... B-31
B.9 Logistic Regression....................................................................................................... B-32
B.10 Data Driven Web Services ............................................................................................ B-34
B.11 Enterprise Miner Macro Variables and Score Code...................................................... B-40
Appendix C SEMMA Methodology.......................................................................... C-1
C.1 Enterprise Miner SEMMA Methodology ....................................................................... C-3


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Attracting Effective Training attract Keeping software training business campaign winning

沙发
maybelleluan(未真实交易用户) 发表于 2009-10-28 07:05:37
非常想买,可是太贵了

藤椅
Jackywolf_2008(未真实交易用户) 发表于 2009-11-10 09:19:50
真的是有点贵,攒攒钱再说了。

板凳
bairn(未真实交易用户) 发表于 2012-4-30 13:55:22
抢得了,30块

报纸
leiding7897(未真实交易用户) 发表于 2013-10-19 03:33:57
太贵了

地板
woaiwojia9(真实交易用户) 发表于 2013-10-25 22:01:47
too expensive

7
woaiwojia9(真实交易用户) 发表于 2013-10-27 12:30:36
SAS traning courses are always good. Downloaded

8
woaiwojia9(真实交易用户) 发表于 2013-10-30 09:16:49
It is a little bit old (2001?). But, it is as good as I thought

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2025-12-9 03:15