楼主: diliuweidu
1367 4

[学科前沿] 求解一道博弈证明题 [推广有奖]

  • 0关注
  • 0粉丝

已卖:1份资源

硕士生

10%

还不是VIP/贵宾

-

威望
0
论坛币
0 个
通用积分
3.0381
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
933 点
帖子
102
精华
0
在线时间
110 小时
注册时间
2011-3-3
最后登录
2024-9-4

楼主
diliuweidu 发表于 2012-12-4 09:57:22 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币


Prove the following lemma: Let G be a finite strategic game, and let G` be a strategic game obtained by eliminating a weakly dominated action in G. If a* is a NE(nash equilibrium) of G`, then it is also a NE(nash equilibrium) of G.

没有证明思路
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:证明题 equilibrium Strategic Dominated following 博弈

沙发
vesperw 发表于 2012-12-4 12:07:32
Let Ai be the set of pure strategies of player i in game G. Ai` be the set of pure strategies of game G`. Note that Ai \Ai`=/=empty for some i since some weakly dominated strategies are eliminated from G to G`.

Now a* is a NE in G`, by definition , for all i and ai in Ai`, ui(ai*, a-i*)>= ui (ai, a-i*). For any si in Ai \ Ai`, since si is weakly dominated, there exists some bi in Ai` such that ui(bi, a-i*)>=ui(si,a-i*). But then ui(ai*, a-i*)>=ui(si,a-i*). Thus ai* is still a best response to a-i* in the original game G. This argument is true for all other players, so a* is a NE in G

藤椅
L03我爱罗-_ 发表于 2012-12-4 14:05:17
没看懂啊

板凳
diliuweidu 发表于 2012-12-4 19:26:01
vesperw 发表于 2012-12-4 12:07
Let Ai be the set of pure strategies of player i in game G. Ai` be the set of pure strategies of gam ...
多谢!

报纸
diliuweidu 发表于 2012-12-4 19:27:44
L03我爱罗-_ 发表于 2012-12-4 14:05
没看懂啊
是题目还是2楼的证明?

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-28 16:49