楼主: 352693585
23991 162

Multilevel Models Applications Using SAS(多层统计分析模型SAS与应用)高清   [推广有奖]

已卖:6111份资源

院士

42%

还不是VIP/贵宾

-

威望
1
论坛币
273386 个
通用积分
51.7908
学术水平
132 点
热心指数
157 点
信用等级
104 点
经验
17932 点
帖子
2133
精华
2
在线时间
2082 小时
注册时间
2012-1-11
最后登录
2025-11-14

楼主
352693585 发表于 2012-12-16 16:57:37 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

       本书是一本英文版介绍统计分析应用SAS软件的书籍,是国内第一本系统介绍各种多层模型的教学和科研参考书。书中采用国际通用的著名统计软件SAS来演示各种多层模型的应用,结合具体的实例,由浅入深地逐步介绍如何使用不同的SAS程序,如Proc MIXED,Proc NLMIXED和Proc GLIMMIX,来进行各种多层资料的模型分析。本书可作为综合性大学,医学院、财经大学,师范院校等相应专业的研究生或本科生教材,也可供实际应用工作者参考。本书德国著名的沃尔特·德·格鲁伊特(Walter de Gruyter)出版社和中国高等教育出版社共同出版。
        王济川,1947年出生。1982年四川大学经济系毕业。1986年获美国康乃尔大学社会学硕士学位,1990年获该校社会学博士学位。1989年9月至1990年8月于美国密西根大学人口中心作博士后研究。1991年9月任职美国俄亥俄州怀特州立大学医学院社区卫生系,2000年7月至今任该系教授。2002年被聘为山东大学客座教授,2006年被聘为山东大学流行病与卫生统计学专业博士研究生兼职导师。王济川博士的主要研究领域为社会科学定量分析方法、人口分析方法及公共卫生和疾病预防研究。http://baike.baidu.com/view/1566397.htm

社会科学总论>统计学>统计方法
王济川,谢海义,(美)James Henry Fisher.
出版社: Walter de Gruyter & Co (2011年12月23日)
精装: 264页
语种:英语

本帖隐藏的内容

Multilevel ModelsApplications Using SAS(多层统计分析模型SAS与应用)高清.pdf (10.35 MB, 需要: 1000 个论坛币)
Multilevel ModelsApplications Using SAS(多层统计分析模型SAS与应用).pdf (10.35 MB, 需要: 1000 个论坛币)


PDF高清版本,可以复制里面的SAS程序
Preface ………………………………………………………………………………………………. v
1 Introduction ..............................................................................................................................1
1.1 Conceptual framework of multilevel modeling ................................................................. 1
1.2 Hierarchically structured data........................................................................................... 3
1.3 Variables in multilevel data .............................................................................................. 4
1.4 Analytical problems with multilevel data .......................................................................... 6
1.5 Advantages and limitations of multilevel modeling .......................................................... 8
1.6 Computer software for multilevel modeling .................................................................... 10
2 Basics of linear multilevel models .........................................................................................13
2.1 Intraclass correlation coefficient (ICC).......................................................................... 13
2.2 Formulation of two-level multilevel models .................................................................. 15
2.3 Model assumptions ......................................................................................................... 17
2.4 Fixed and random regression coefficients...................................................................... 18
2.5 Cross-level interactions................................................................................................... 20
2.6 Measurement centering................................................................................................... 21
2.7 Model estimation.............................................................................................................23
2.8 Model fit, hypothesis testing, and model comparisons.................................................. 27
2.8.1 Model fit .............................................................................................................. 27
2.8.2 Hypothesis testing ............................................................................................... 28
2.8.3 Model comparisons ............................................................................................. 30
2.9 Explained level-1 and level-2 variances......................................................................... 30
2.10 Steps for building multilevel models............................................................................ 33
2.11 Higher-level multilevel models .................................................................................... 37
3 Application of two-level linear multilevel models................................................................39
3.1 Data ................................................................................................................................. 39
3.2 Empty model ...................................................................................................................42
3.3 Predicting between-group variation ............................................................................... 48
3.4 Predicting within-group variation................................................................................... 53
3.5 Testing level-1 random................................................................................................... 57
3.6 Across-level interactions ................................................................................................ 62
3.7 Other issues in model development................................................................................ 66
4 Application of multilevel modeling to longitudinal data...................................................73
4.1 Features of longitudinal data............................................................................................ 73
4.2 Limitations of traditional approaches for modeling longitudinal data ............................. 74
4.3 Advantages of multilevel modeling for longitudinal data................................................ 75
4.4 Formulation of growth models......................................................................................... 75
4.5 Data and variable description........................................................................................... 77
4.6 Linear growth models ...................................................................................................... 79
4.6.1 The shape of average outcome change over time ................................................. 80
4.6.2 Random intercept growth models......................................................................... 80
4.6.3 Random intercept-slope growth models ............................................................... 84
4.6.4 Intercept and slope as outcomes ........................................................................... 86
4.6.5 Controlling for individual background variables in models ................................. 88
4.6.6 Coding time score................................................................................................. 89
4.6.7 Residual variance/covariance structures............................................................... 91
4.6.8 Time-varying covariates....................................................................................... 95
4.7 Curvilinear growth models .............................................................................................. 98
4.7.1 Polynomial growth model .................................................................................... 98
4.7.2 Dealing with collinearity in higher order polynomial growth model ................. 100
4.7.3 Piecewise (linear spline) growth model.............................................................. 106
5 Multilevel models for discrete outcome measures ........................................................... 113
5.1 Introduction to generalized linear mixed models......................................................... 113
5.1.1 Generalized linear models................................................................................. 113
5.1.2 Generalized linear mixed models...................................................................... 115
5.2 SAS Procedures for multilevel modeling with discrete outcomes .............................. 116
5.3 Multilevel models for binary outcomes........................................................................ 117
5.3.1 Logistic regression models................................................................................ 117
5.3.2 Probit models..................................................................................................... 118
5.3.3 Unobserved latent variables and observed binary outcome measures ............. 119
5.3.4 Multilevel logistic regression models .............................................................. 119
5.3.5 Application of multilevel logistic regression models....................................... 120
5.3.6 Application of multilevel logit models to longitudinal data ............................ 136
5.4 Multilevel models for ordinal outcomes....................................................................... 139
5.4.1 Cumulative logit models ................................................................................... 139
5.4.2 Multilevel cumulative logit models .................................................................. 141
。。。
Index............................................................................................................................................. 259



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Applications Application Multilevel models cation 统计 education 模型 techniques structure

已有 2 人评分经验 论坛币 学术水平 热心指数 信用等级 收起 理由
eijuhz + 20 + 1 精彩帖子
intheangel + 100 + 100 + 5 + 5 + 5 精彩帖子

总评分: 经验 + 120  论坛币 + 100  学术水平 + 5  热心指数 + 6  信用等级 + 5   查看全部评分

本帖被以下文库推荐

新浪微博Infinitely divisible(无穷可分)http://weibo.com/1692902863
科学网博客http://blog.sciencenet.cn/u/a3141592653589

沙发
120913119 发表于 2012-12-16 17:01:50
对22335155

藤椅
lzu千寻 发表于 2012-12-16 17:05:53
hui fu kan kan ~!
生活的自由就是自由的生活!

板凳
tmdxyz 发表于 2012-12-16 18:07:37
太贵了

报纸
mosessa 发表于 2012-12-16 21:13:11
看一看......

地板
mosessa 发表于 2012-12-16 21:14:05
楼主还是抢银行把

那个快

7
xiaow8213 发表于 2012-12-16 21:15:17
真贵

8
352693585 发表于 2012-12-16 21:20:13
mosessa 发表于 2012-12-16 21:14
楼主还是抢银行把

那个快
论坛里面首发的统计年鉴2000币,还要贵,呵呵。
新浪微博Infinitely divisible(无穷可分)http://weibo.com/1692902863
科学网博客http://blog.sciencenet.cn/u/a3141592653589

9
Bridgenc 发表于 2012-12-16 21:28:38
too expensive

10
freebird2010 发表于 2012-12-16 21:39:57
kankan

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2025-12-31 00:20