楼主: daisy526
1268 2

[学科前沿] merton利率模型中为什么利率为负的概率大于零 [推广有奖]

  • 0关注
  • 0粉丝

等待验证会员

初中生

57%

还不是VIP/贵宾

-

威望
0
论坛币
0 个
通用积分
0
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
124 点
帖子
13
精华
0
在线时间
8 小时
注册时间
2013-3-10
最后登录
2013-9-12

楼主
daisy526 发表于 2013-3-25 17:04:11 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
  • merton利率模型为什么利率为负的概率大于零,感谢!
  • CIR利率模型中利率的期望和方差怎么求
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Merton 利率模型 ert RTO CIR 利率 模型

回帖推荐

Chemist_MZ 发表于2楼  查看完整内容

1. In merton's model, the interest rate just follows a brownian motion with drift. So it is normally distributed. We know that normal distribution can take the value from negative to positive infinity. 2. The mean and variance of CIR model is just the standard way to solve this kind of SDE. You first applying Ito lemma to the 'discounted process'. Say CIR model is like this: dr=a(b-r)dt+c sqrt( ...

本帖被以下文库推荐

沙发
Chemist_MZ 在职认证  发表于 2013-3-25 20:20:02
1. In merton's model, the interest rate just follows a brownian motion with drift. So it is normally distributed. We know that normal distribution can take the value from negative to positive infinity.

2. The mean and variance of CIR model is just the standard way to solve this kind of SDE. You first applying Ito lemma to the 'discounted process'. Say CIR model is like this: dr=a(b-r)dt+c sqrt(r)dz. calculate d(exp(at)r)first. This will kill the r in the drift term. So you integrate the equation and take expectation and z term will disappear, so that you get the mean. For variance, it is basically the same thing.  What I recommend is you calculate E(r^2), and use E(r^2)-E(r)^2 to get the variance.

If you have any further questions, please let me know.

best
已有 1 人评分经验 论坛币 收起 理由
见路不走 + 5 + 5 热心帮助其他会员

总评分: 经验 + 5  论坛币 + 5   查看全部评分

扫头像关注公众号“二点三西格玛”衍生品定价与风险管理

藤椅
daisy526 发表于 2013-3-25 22:15:40
Chemist_MZ 发表于 2013-3-25 20:20
1. In merton's model, the interest rate just follows a brownian motion with drift. So it is normally ...
Thanks to your help , I get it ! I do thank you very much ! Best wishes to you!

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jr
拉您进交流群
GMT+8, 2026-1-2 05:07