楼主: jgrsun
5163 23

[教材交流讨论] 求教HULL 里面关于B-S 一道题目 [推广有奖]

11
irvingy 发表于 2007-9-7 07:30:00
以下是引用qdzhang在2007-9-7 5:02:00的发言:

The BS model's contribution is not for option pricing, but for its partial-derivative equation. The pricing formulation generated by risk-neutral valuation satisfies the BS equation.


By the way, partial differential equation, pal, not partial-derivative equation.

The BS PDE is already risk-neutral, that's why you don't see the real world drift term.

Now you tell me you use risk neutral valuation, which is a very important tool, to solve that PDE, zzz....

12
jgrsun 发表于 2007-9-7 12:47:00

题目是JOHN HULL 《Options, futures and other derivative securities, 5th ed》第12章 B-S MODEL里面的习题,跟原题有些不一样。

确实不用B-S MODEL,

第一步,应该还好,PAYOFF 刚刚服从一个期望是U-Q^2/2, 方差是O/T^0.5的标准正态分布;

第二步关键还是用 risk-neutral , 用risk-free rate 取代U, 再配上时间因素,E^-rT,结果就是E^-rT*(r--Q^2/2).

13
qdzhang 发表于 2007-9-8 04:04:00
FYI, go to the appendix of that chapter

BTW, risk-neutral valuation is NOT to solve PDE ...

14
irvingy 发表于 2007-9-8 07:07:00
以下是引用qdzhang在2007-9-8 4:04:00的发言:

BTW, risk-neutral valuation is NOT to solve PDE ...

yeah, you're talking

以下是引用qdzhang在2007-9-6 1:49:00的发言:
题目说的很清楚,用risk neutral valuation to value the derivative.
Risk-neutral valuation 通常分三布:
1. Assume that the expected return from the underlying asset is the risk-free interest rate, i (ie, assume mu = r)
2. Calculate the expected payoff from the derivative.
3. Discount the expected payoff at the risk-free interest rate.
需要注意的是,risk-neutral valuation只是一个工具来解BS方程。它的结构不仅在risk-neutral世界里适用,在实际世界里也适用。

15
jgrsun 发表于 2007-9-8 11:59:00
以下是引用qdzhang在2007-9-8 4:04:00的发言:
FYI, go to the appendix of that chapter

BTW, risk-neutral valuation is NOT to solve PDE ...

看了appendix, 问题如下: the question is to calculate the price at the time 0 , if i ues the method as the appendix show, the result as i mentioned, i think it just the expect return of the prize.BTW, this is the return rate of the prize, just the rate, not the true value of this derivative.

16
irvingy 发表于 2007-9-8 13:41:00
以下是引用jgrsun在2007-9-7 12:47:00的发言:

题目是JOHN HULL 《Options, futures and other derivative securities, 5th ed》第12章 B-S MODEL里面的习题,跟原题有些不一样。

确实不用B-S MODEL,

第一步,应该还好,PAYOFF 刚刚服从一个期望是U-Q^2/2, 方差是O/T^0.5的标准正态分布;

第二步关键还是用 risk-neutral , 用risk-free rate 取代U, 再配上时间因素,E^-rT,结果就是E^-rT*(r--Q^2/2).

是你自己改的题目吗,说法完全不严谨

应该是这样,假设现在的时间为t,到期时间为T,到期的payoff为1 / (T - t) * log(S_T / S_t),求t = 0时候的价格f_0

f_t = e^(-r*(T - t)) * E_Q [1 / (T - t) * log(S_T / S_t)],这个叫做discounted expectation of payoff under the risk neutral measure Q

代进去t = 0

f_0 = e^(-r*T) * E_Q [1 / T * log(S_T / S_0)] = e^(-r * T) / T * ( E_Q [log(S_T)] - log(S_0) )

E_Q[log(S_T)] = log(S_0) + (r - 1 / 2 * sigma ^ 2) * T,因为你假设S_t是GBM

代进去,f_0 = e^(-r * T) * (r - 1 / 2 * sigma ^ 2)

17
jgrsun 发表于 2007-9-8 21:35:00

题目是书上的,我们用的那本教材是《fundamental of options, futures》,和《Options, futures and other derivative securities, 5th ed》一样,不过比它要简单一些,基本上内容是一样的。这道题目是课后习题,12章里面第12题。

18
irvingy 发表于 2007-9-8 21:48:00
以下是引用jgrsun在2007-9-8 21:35:00的发言:

题目是书上的,我们用的那本教材是《fundamental of options, futures》,和《Options, futures and other derivative securities, 5th ed》一样,不过比它要简单一些,基本上内容是一样的。这道题目是课后习题,12章里面第12题。


Okay, I guess that's why we have the word "fundamentals" in the title.

Anyway, I still believe Hull should have worded it in a more careful way.

19
qdzhang 发表于 2007-9-9 02:45:00
Thanks man. You pointed out what I didn't explain clearly.

20
jgrsun 发表于 2007-9-9 11:17:00

我有一点不是很清楚,通过上面的方法求出的f_0 = e^(-r * T) * (r - 1 / 2 * sigma ^ 2),它的两个分式,前面代表的是discounted expectation , 后面的一个分式表示的是a dollar amount of this derivative payoff, 也就是说其只是个增长率,而非其价格本身,为什么两个乘起来就能代表derivative 在0时刻的价格呢?

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jr
拉您进交流群
GMT+8, 2025-12-25 21:00