楼主: 小小星球
56316 38

[问答] 面板数据怎么做因子分析?和主成分分析的区别?   [推广有奖]

  • 1关注
  • 2粉丝

初中生

66%

还不是VIP/贵宾

-

威望
0
论坛币
1 个
通用积分
0
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
185 点
帖子
18
精华
0
在线时间
8 小时
注册时间
2013-4-17
最后登录
2014-5-14

楼主
小小星球 发表于 2013-4-21 16:49:32 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
一、有10年 20个省份 6个指标的数据,需要通过因子分析降维,最终得到10年 20个省份 1个总指标的 分别得分,然后绘制各年各省的总得分曲线图,用SPSS要怎么做?
     要单个年份 截面分别进行因子分析,
     还是单个省份 各年分别进行因子分析,
     还是各年各截面直接进行一次性的因子分析?
二、因子分析和主成分分析有什么区别,根据我的需要,我是应该用因子分析,还会用主成分分析?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:主成分分析 因子分析 面板数据 怎么做 主成分 面板 数据 主成分分析法 spss主成分分析 逐步回归分析 多元回归分析 因子分析法 应用时间序列分析

沙发
小小星球 发表于 2013-4-23 15:47:02
怎么都没高手愿意帮帮我呢,求高手指点呀!

藤椅
黄强1123 发表于 2013-4-24 10:12:04
主成分分析仅仅是变量变换,而因子分析需要构造因子模型。
主成分分析:原始变量的线性组合表示新的综合变量,即主成分;
因子分析:潜在的假想变量和随机影响变量的线性组合表示原始变量。
已有 1 人评分论坛币 热心指数 收起 理由
crystal8832 + 10 + 1 热心帮助其他会员

总评分: 论坛币 + 10  热心指数 + 1   查看全部评分

板凳
小小星球 发表于 2013-4-24 11:51:38
黄强1123 发表于 2013-4-24 10:12
主成分分析仅仅是变量变换,而因子分析需要构造因子模型。
主成分分析:原始变量的线性组合表示新的综合变量 ...
是,这些我有看到,但是还是不太明白,不太明白自己需要做的是主成分,还是因子分析!
您能否给我举个通俗点的例子呢?

报纸
xiaoliaipa 发表于 2013-10-10 09:20:17
同问,看了一篇论文,是用唀个年份 截面分别进行因子分析,做了很多次,然后再进行指标的分类~正在研究中,还有好多不明白的

地板
尹熏依 发表于 2014-4-11 21:15:51
xiaoliaipa 发表于 2013-10-10 09:20
同问,看了一篇论文,是用唀个年份 截面分别进行因子分析,做了很多次,然后再进行指标的分类~正在研究中, ...
想问问是那篇论文,名字是什么

7
xiaoliaipa 发表于 2014-4-23 15:47:32
尹熏依 发表于 2014-4-11 21:15
想问问是那篇论文,名字是什么
不好意思我具体找不到哪一篇了,你可以搜下多指标面板数据 或者 面板数据 因子分析此类主题的  还是有很一些文章写多指标面板数据进行因子分析的,但是觉得始终是存在缺陷的~~建议用其他方法 《多指标面板数据融合聚类分析》这是  数理统计与管理 期刊上面的一篇文章 系统了讲了面板数据进行因子分析的缺陷 很清楚

8
ReneeBK 发表于 2014-4-24 08:15:55


每每谈起主成分和因子有啥区别,楼主总是有种心里大概明白,但就是说不清的感觉,终于看到一篇帖子,从十个方面阐述了两者的区别,留作纪念,同时也发给大家做个参考:

1.原理不同:
主成分分析(Principal components analysis,PCA)基本原理:利用降维(线性变换)的思想,在损失很少信息的前提下把多个指标转化为几个不相关的综合指标(主成分),即每个主成分都是原始变量的线性组合,且各个主成分之间互不相关,使得主成分比原始变量具有某些更优越的性能(主成分必须保留原始变量90%以上的信息),从而达到简化系统结构,抓住问题实质的目的。
因子分析(Factor Analysis,FA)基本原理:利用降维的思想,由研究原始变量相关矩阵内部的依赖关系出发,把一些具有错综复杂关系的变量表示成少数的公共因子和仅对某一个变量有作用的特殊因子线性组合而成。就是要从数据中提取对变量起解释作用的少数公共因子(因子分析是主成分的推广,相对于主成分分析,更倾向于描述原始变量之间的相关关系)

2.线性表示方向不同:
因子分析是把变量表示成各公因子的线性组合
主成分分析中则是把主成分表示成各变量的线性组合。

3.假设条件不同:
主成分分析:不需要有假设(assumptions),
因子分析:需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specificfactor)之间也不相关,共同因子和特殊因子之间也不相关。

4.求解方法不同:
求解主成分的方法:从协方差阵出发(协方差阵已知),从相关阵出发(相关阵R已知),采用的方法只有主成分法。(实际研究中,总体协方差阵与相关阵是未知的,必须通过样本数据来估计)

       注意事项:由协方差阵出发与由相关阵出发求解主成分所得结果不一致时,要恰当的选取某一种方法;一般当变量单位相同或者变量在同一数量等级的情况下,可以直接采用协方差阵进行计算;对于度量单位不同的指标或是取值范围彼此差异非常大的指标,应考虑将数据标准化,再由协方差阵求主成分;实际应用中应该尽可能的避免标准化,因为在标准化的过程中会抹杀一部分原本刻画变量之间离散程度差异的信息。此外,最理想的情况是主成分分析前的变量之间相关性高,且变量之间不存在多重共线性问题(会出现最小特征根接近0的情况);
求解因子载荷的方法:主成分法,主轴因子法,极大似然法,最小二乘法,a因子提取法。

5.主成分和因子的变化不同:
主成分分析:当给定的协方差矩阵或者相关矩阵的特征值唯一时,主成分一般是固定的独特的;
因子分析:因子不是固定的,可以旋转得到不同的因子。

6.因子数量与主成分的数量
主成分分析:主成分的数量是一定的,一般有几个变量就有几个主成分(只是主成分所解释的信息量不等),实际应用时会根据碎石图提取前几个主要的主成分。
因子分析:因子个数需要分析者指定(SPSS和sas根据一定的条件自动设定,只要是特征值大于1的因子主可进入分析),指定的因子数量不同而结果也不同;

7.解释重点不同:
主成分分析:重点在于解释个变量的总方差,
因子分析:则把重点放在解释各变量之间的协方差。

8.算法上的不同:
主成分分析:协方差矩阵的对角元素是变量的方差;
因子分析:所采用的协方差矩阵的对角元素不在是变量的方差,而是和变量对应的共同度(变量方差中被各因子所解释的部分)

9.优点不同:
因子分析:对于因子分析,可以使用旋转技术,使得因子更好的得到解释,因此在解释主成分方面因子分析更占优势;其次因子分析不是对原有变量的取舍,而是根据原始变量的信息进行重新组合,找出影响变量的共同因子,化简数据;
主成分分析:第一:如果仅仅想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析,不过一般情况下也可以使用因子分析;
                            第二:通过计算综合主成分函数得分,对客观经济现象进行科学评价;
                            第三:它在应用上侧重于信息贡献影响力综合评价。
                            第四:应用范围广,主成分分析不要求数据来自正态分布总体,其技术来源是矩阵运算的技术以及矩阵对角化和矩阵的谱分解技术,因而凡是涉及多维度问题,都可以应用主成分降维;

10.应用场景不同:
主成分分析:可以用于系统运营状态做出评估,一般是将多个指标综合成一个变量,即将多维问题降维至一维,这样才能方便排序评估;此外还可以应用于经济效益、经济发展水平、经济发展竞争力、生活水平、生活质量的评价研究上;主成分还可以用于和回归分析相结合,进行主成分回归分析,甚至可以利用主成分分析进行挑选变量,选择少数变量再进行进一步的研究。一般情况下主成分用于探索性分析,很少单独使用,用主成分来分析数据,可以让我们对数据有一个大致的了解。
几个常用组合:
主成分分析+判别分析,适用于变量多而记录数不多的情况;
主成分分析+多元回归分析,主成分分析可以帮助判断是否存在共线性,并用于处理共线性问题;
主成分分析+聚类分析,不过这种组合因子分析可以更好的发挥优势。
因子分析:首先,因子分析+多元回归分析,可以利用因子分析解决共线性问题;其次,可以利用因子分析,寻找变量之间的潜在结构;再次,因子分析+聚类分析,可以通过因子分析寻找聚类变量,从而简化聚类变量;此外,因子分析还可以用于内在结构证实。

胖胖小龟宝
已有 5 人评分论坛币 学术水平 热心指数 信用等级 收起 理由
NK-donkey + 5 + 3 + 3 + 3 精彩帖子
蒙分一丸药 + 5 + 1 + 1 + 1 精彩帖子
Stakiny + 1 + 1 + 1 观点有启发
complicated + 1 + 1 + 1 + 1 精彩帖子
xiaowenzi22 + 1 热心帮助其他会员

总评分: 论坛币 + 11  学术水平 + 6  热心指数 + 7  信用等级 + 6   查看全部评分

9
ReneeBK 发表于 2014-4-24 08:20:10

Dynamic factor analysis for panel data: A generalized model


Nikolaos Zirogiannis, University of Massachusetts - Amherst


Abstract
I develop a generalized dynamic factor model for panel data with the goal of estimating an unobserved index. While similar models have been developed in the literature of dynamic factor analysis, my contribution is threefold. First, contrary to simple dynamic factor analysis where multiple attributes of the same subject are measured at each time period, my model also accounts for multiple subjects. It is therefore applicable to a panel data framework (i.e. multiple attributes for multiple subjects observed over time). Second, it estimates an unobserved index for every subject for every time period, as opposed to previous work where a single unobserved index was estimated for all subjects for every time period. Third, I address the complexity of the model by developing a novel iterative estimation process which we call the Two-Cycle Conditional Expectation-Maximization (2CCEM) algorithm. The 2CCEM algorithm is flexible enough to handle a variety of different types of datasets. The model is applied on a panel measuring attributes related to the operation of water and sanitation utilities. The goal is to estimate a dynamic benchmarking index that will capture the financial and operational performance of these utilities.^
Subject Area
Economics, Environmental|Statistics
Recommended Citation
Nikolaos Zirogiannis, "Dynamic factor analysis for panel data: A generalized model" (January 1, 2013). Doctoral Dissertations Available from Proquest. Paper AAI3603181.
http://www.timberlake.co.uk/download/oxmetrics-conference/ZirogiannisTripodis-OxM14-OxmetricsZirogiannisTripodis.pdf
已有 1 人评分学术水平 热心指数 信用等级 收起 理由
Stakiny + 1 + 1 + 1 热心帮助其他会员

总评分: 学术水平 + 1  热心指数 + 1  信用等级 + 1   查看全部评分

10
ReneeBK 发表于 2014-4-24 08:22:57
J Med Syst. 2005 Aug;29(4):401-11.

The measurement of nursing home quality: multilevel confirmatory factor analysis of panel data



Abstract
This study examined the validity of a measurement model of nursing home quality by using multilevel confirmatory factor analysis. Based on Mullan and Harrington's (2001) facility-level quality measurement model, a two-level analysis (facility and state) of the measurement model were performed. Two research questions were asked: (1) Can the measurement model developed at the facility-level be applied to state-level nursing home quality measurement? (2) Is the measurement model of nursing home quality stable over time? Panel data of 1997 and 2001, from the national OSCAR database, were used to test the assumptions. The results show that the state-level measurement model fits the data better than the facility-level model does. When the indicator "assessment" was removed from the state-level measurement model, a better-fitted measurement model was found. The two-level measurement model is relatively stable over time, demonstrating the construct validity of this measurement model.
PMID: 16178337 [PubMed - indexed for MEDLINE]
Publication Types, MeSH Terms
LinkOut - more resources

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2026-1-6 13:59