楼主: 蓝色
12877 13

[书籍介绍] Negative Binomial Regression (2nd, 2011) [推广有奖]

贵宾

已卖:4061份资源

泰斗

34%

还不是VIP/贵宾

-

TA的文库  其他...

统计软件和图书资源

Stata FAQ and Econometrics

威望
13
论坛币
1100105 个
通用积分
78793.5486
学术水平
3454 点
热心指数
3913 点
信用等级
2749 点
经验
472817 点
帖子
11699
精华
5
在线时间
20301 小时
注册时间
2004-7-15
最后登录
2025-12-3

初级热心勋章 初级信用勋章 初级学术勋章 中级学术勋章 中级热心勋章 中级信用勋章 高级热心勋章 高级信用勋章

楼主
蓝色 发表于 2013-8-3 00:02:49 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Negative Binomial Regression (2nd, 2011)

书中的例子是用Stata和R程序写的。便于大家学习。
https://bbs.pinggu.org/thread-2223978-1-1.html

Author:
Joseph M. Hilbe
Publisher:Cambridge University Press
Copyright:2011
ISBN-13:978-0-521-19815-8
Pages:553; hardcover
Price:$73.75




书中的数据和stata的dofile文件
http://works.bepress.com/joseph_hilbe/
http://www.stata.com/bookstore/negative-binomial-regression/index.html



Comment from the Stata technical group

Negative Binomial Regression, Second Edition, by Joseph M. Hilbe, reviews the negative binomial model and its variations. Negative binomial regression—a recently popular alternative to Poisson regression—is used to account for overdispersion, which is often encountered in many real-world applications with count responses.

Negative Binomial Regression covers the count response models, their estimation methods, and the algorithms used to fit these models. Hilbe details the problem of overdispersion and ways to handle it. The book emphasizes the application of negative binomial models to various research problems involving overdispersed count data. Much of the book is devoted to discussing model-selection techniques, the interpretation of results, regression diagnostics, and methods of assessing goodness of fit.

Hilbe uses Stata extensively throughout the book to display examples. He describes various extensions of the negative binomial model—those that handle excess zeros, censored and truncated data, panel and longitudinal data, and data from sample selection.

Negative Binomial Regression is aimed at those statisticians, econometricians, and practicing researchers analyzing count-response data. The book is written for a reader with a general background in maximum likelihood estimation and generalized linear models, but Hilbe includes enough mathematical details to satisfy the more theoretically minded reader.

This second edition includes added material on finite-mixture models; quantile-count models; bivariate negative binomial models; and various methods of handling endogeneity, including the generalized method of moments.


Table of contentsPreface to the second edition
1. Introduction
1.1 What is a negative binomial model?
1.2 A brief history of the negative binomial
1.3 Overview of the book

2. The concept of risk
2.1 Risk and 2 × 2 tables
2.2 Risk and 2 × k tables
2.3 Risk ratio confidence intervals
2.4 Risk difference
2.5 The relationship of risk to odds ratios
2.6 Marginal probabilities: joint and conditional

3. Overview of count response models
3.1 Varieties of count response model
3.2 Estimation
3.3 Fit considerations

4. Methods of estimation
4.1 Derivation of the IRLS algorithm
4.1.1 Solving for ∂ L or U — the gradient
4.1.2 Solving for ∂2 L
4.1.3 The IRLS fitting algorithm

4.2 Newton–Raphson algorithms
4.2.1 Derivation of the Newton–Raphson
4.2.2 GLM with OIM
4.2.3 Parameterizing from μ to xΒ
4.2.4 Maximum likelihood estimators


5. Assessment of count models
5.1 Residuals for count response models
5.2 Model fit tests
5.2.1 Traditional fit tests
5.2.2 Information criteria fit tests

5.3 Validation models

6. Poisson regression
6.1 Derivation of the Poisson model
6.1.1 Derivation of the Poisson from the binomial distribution
6.1.2 Derivation of the Poisson model

6.2 Synthetic Poisson models
6.2.1 Construction of synthetic models
6.2.2 Changing response and predictor values
6.2.3 Changing multivariable predictor values

6.3 Example: Poisson model
6.3.1 Coefficient parameterization
6.3.2 Incidence rate ratio parameterization

6.4 Predicted counts
6.5 Effects plots
6.6 Marginal effects, elasticities, and discrete change
6.6.1 Marginal effects for Poisson and negative binomial effects models
6.6.2 Discrete change for Poisson and negative binomial models

6.7 Parameterization as a rate model
6.7.1 Exposure in time and area
6.7.2 Synthetic Poisson with offset
6.7.3 Example


7. Overdispersion
7.1 What is overdispersion?
7.2 Handling apparent overdispersion
7.2.1 Creation of a simulated base Poisson model
7.2.2 Delete a predictor
7.2.3 Outliers in data
7.2.4 Creation of interaction
7.2.5 Testing the predictor scale
7.2.6 Testing the link

7.3 Methods of handling real overdispersion
7.3.1 Scaling of standard errors / quasi-Poisson
7.3.2 Quasi-likelihood variance multipliers
7.3.3 Robust variance estimators
7.3.4 Bootstrapped and jackknifed standard errors

7.4 Tests of overdispersion
7.4.1 Score and Lagrange multiplier tests
7.4.2 Boundary likelihood ratio test
7.4.3 R2p and R2pd tests for Poisson and negative binomial models

7.5 Negative binomial overdispersion

8. Negative binomial regression
8.1 Varieties of negative binomial
8.2 Derivation of the negative binomial
8.2.1 Poisson–gamma mixture model
8.2.2 Derivation of the GLM negative binomial

8.3 Negative binomial distributions
8.4 Negative binomial algorithms
8.4.1 NB-C: canonical negative binomial
8.4.2 NB2: expected information matrix
8.4.3 NB2: observed information matrix
8.4.4 NB2: R maximum likelihood function


9. Negative binomial regression: modeling
9.1 Poisson versus negative binomial
9.2 Synthetic negative binomial
9.3 Marginal effects and discrete change
9.4 Binomial versus count models
9.5 Examples: negative binomial regression
Example 1: Modeling number of marital affairs
Example 2: Heart procedures
Example 3: Titanic survival data
Example 4: Health reform data


10. Alternative variance parameterizations
10.1 Geometric regression: NB α = 1
10.1.1 Derivation of the geometric
10.1.2 Synthetic geometric models
10.1.3 Using the geometric model
10.1.4 The canonical geometric model

10.2 NB1: The linear negative binomial model
10.2.1 NB1 as QL-Poisson
10.2.2 Derivation of NB1
10.2.3 Modeling with NB1
10.2.4 NB1: R maximum likelihood function

10.3 NB-C: Canonical negative binomial regression
10.3.1 NB-C overview and formulae
10.3.2 Synthetic NB-C models
10.3.3 NB-C models

10.4 NB-H: Heterogeneous negative binomial regression
10.5 The NB-P model: generalized negative binomial
10.6 Generalized Waring regression
10.7 Bivariate negative binomial
10.8 Generalized Poisson regression
10.9 Poisson inverse Gaussian regression (PIG)
10.10 Other count models

11. Problems with zero counts
11.1 Zero-truncated count models
11.2 Hurdle models
11.2.1 Theory and formulae for hurdle models
11.2.2 Synthetic hurdle models
11.2.3 Applications
11.2.4 Marginal effects

11.3 Zero-inflated negative binomial models
11.3.1 Overview of ZIP/ZINB models
11.3.2 ZINB algorithms
11.3.3 Applications
11.3.4 Zero-altered negative binomial
11.3.5 Tests of comparative fit
11.3.6 ZINB marginal effects

11.4 Comparison of models

12. Censored and truncated count models
12.1 Censored and truncated models — econometric parameterization
12.1.1 Truncation
12.1.2 Censored models

12.2 Censored Poisson and NB2 models — survival parameterization

13. Handling endogeneity and latent class models
13.1 Finite mixture models
13.1.1 Basics of finite mixture modeling
13.1.2 Synthetic finite mixture models

13.2 Dealing with endogeneity and latent class models
13.2.1 Problems related to endogeneity
13.2.2 Two-stage instrumental variables approach
13.2.3 Generalized method of moments (GMM)
13.2.4 NB2 with an endogenous multinomial treatment variable
13.2.5 Endogeneity resulting from measurement error

13.3 Sample selection and stratification
13.3.1 Negative binomial with endogenous stratification
13.3.2 Sample selection models
13.3.3 Endogenous switching models

13.4 Quantile count models

14. Count panel models
14.1 Overview of count panel models
14.2 Generalized estimating equations: negative binomial
14.2.1 The GEE algorithm
14.2.2 GEE correlation structures
14.2.3 Negative binomial GEE models
14.2.4 GEE goodness-of-fit
14.2.5 GEE marginal effects

14.3 Unconditional fixed-effects negative binomial model
14.4 Conditional fixed-effects negative binomial model
14.5 Random-effects negative binomial
14.6 Mixed-effects negative binomial models
14.6.1 Random-intercept negative binomial models
14.6.2 Non-parametric random-intercept negative binomial
14.6.3 Random-coefficient negative binomial models

14.7 Multilevel models

15. Bayesian negative binomial models
15.1 Bayesian versus frequentist methodology
15.2 The logic of Bayesian regression estimation
15.3 Applications

Appendix A: Constructing and interpreting interaction terms
Appendix B: Data sets, commands, functions
References and further reading
Index






二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:regression regressio Binomial negative regress 2011

已有 6 人评分经验 论坛币 学术水平 热心指数 信用等级 收起 理由
muzituchuan + 1 + 1 很好的材料
yucuiting + 50 + 1 奖励积极上传好的资料
Sunknownay + 100 + 10 + 2 + 1 + 1 精彩帖子
dxystata + 50 鼓励积极发帖讨论
hiderm + 1 + 1 多谢推荐!
h3327156 + 2 + 2 + 2 好的意见建议

总评分: 经验 + 150  论坛币 + 61  学术水平 + 4  热心指数 + 6  信用等级 + 4   查看全部评分

本帖被以下文库推荐

沙发
hplcdadong 发表于 2013-8-3 08:41:52
Thanks a lot for introduction. A great book!

藤椅
biostat 发表于 2013-8-4 23:13:29
蓝版热心人,支持。

板凳
xkdog 发表于 2013-8-6 13:07:56
这个厉害

报纸
mw89 发表于 2013-9-18 04:05:09
It is a very clear edition. The content is interesting. Thanks.

地板
eeabcde 发表于 2016-7-29 13:04:38
谢谢分享

7
chenkai13 发表于 2016-12-19 09:24:25
好书,就是下不了

8
zhaoyuanying 发表于 2018-11-16 11:15:06
谢谢楼主

9
远大前程雨 发表于 2019-8-26 17:41:51

Thanks a lot for introduction. 谢谢

10
丝路春秋 发表于 2020-3-3 18:57:48
Thanks a lot for sharing!

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-5 18:40