每次用lisrel软件做结构方程模型分析时,用画图方式将结构方程模型画好后,生成以下的程序图1,点击“run”后就会(waring:The model does not --------)再点击确定后,就会产生图2 的结果。总是无法得到机构图。请好心的高手指教!!!!!!
图1
TI
DA NI=13 NO=391 MA=CM
LA
CONST x2 x3 x5 x6 x7 x8 x9 x10 x11
x12 x13 x14 x15
CM FI='C:\Documents and Settings\Administrator\桌面\数据\11.cov' SY
SE
12 13 4 5 8 10 6 7 1 2 3 9 11 /
MO NX=11 NY=2 NK=4 NE=1 GA=FI PS=SY TE=SY TD=SY
LE
y5
LK
y1 y2 y3 y4
FR LY(1,1) LY(2,1) LX(1,1) LX(2,1) LX(3,1) LX(4,1) LX(5,2) LX(6,2) LX(7,3)
FR LX(8,3) LX(9,3) LX(10,4) LX(11,4) GA(1,1) GA(1,2) GA(1,3) GA(1,4)
PD
OU
图2
DATE: 8/ 6/2013
TIME: 16:56
L I S R E L 8.80
BY
Karl G. J攔eskog & Dag S攔bom
This program is published exclusively by
Scientific Software International, Inc.
7383 N. Lincoln Avenue, Suite 100
Lincolnwood, IL 60712, U.S.A.
Phone: (800)247-6113, (847)675-0720, Fax: (847)675-2140
Copyright by Scientific Software International, Inc., 1981-2006
Use of this program is subject to the terms specified in the
Universal Copyright Convention.
Website: www.ssicentral.com
The following lines were read from file C:\Documents and Settings\Administrator\桌面\数据\11.LPJ:
TI
DA NI=13 NO=391 MA=CM
LA
CONST x2 x3 x5 x6 x7 x8 x9 x10 x11
x12 x13 x14 x15
CM FI='C:\Documents and Settings\Administrator\桌面\数据\11.cov' SY
SE
12 13 4 5 8 10 6 7 1 2 3 9 11 /
MO NX=11 NY=2 NK=4 NE=1 GA=FI PS=SY TE=SY TD=SY
LE
y5
LK
y1 y2 y3 y4
FR LY(1,1) LY(2,1) LX(1,1) LX(2,1) LX(3,1) LX(4,1) LX(5,2) LX(6,2) LX(7,3)
FR LX(8,3) LX(9,3) LX(10,4) LX(11,4) GA(1,1) GA(1,2) GA(1,3) GA(1,4)
PD
OU
TI
Number of Input Variables 13
Number of Y - Variables 2
Number of X - Variables 11
Number of ETA - Variables 1
Number of KSI - Variables 4
Number of Observations 391
TI
Covariance Matrix
x13 x14 x5 x6 x9 x11
-------- -------- -------- -------- -------- --------
x13 0.15
x14 -0.05 1.69
x5 -0.05 -0.45 2.19
x6 -0.07 -0.08 0.54 1.09
x9 0.03 0.23 -0.70 -0.70 1.41
x11 0.03 0.22 -0.66 -0.69 1.39 1.41
x7 0.00 -0.03 0.11 0.23 -0.19 -0.18
x8 0.00 -0.04 0.17 0.29 -0.24 -0.23
CONST 0.04 0.32 -0.31 -0.22 0.10 0.10
x2 0.01 0.03 0.25 0.22 -0.15 -0.13
x3 0.02 0.02 0.22 0.18 -0.34 -0.31
x10 0.02 -0.21 0.29 0.02 -0.21 -0.18
x12 0.02 -0.04 -0.17 -0.14 0.04 0.03
Covariance Matrix
x7 x8 CONST x2 x3 x10
-------- -------- -------- -------- -------- --------
x7 0.25
x8 0.22 0.25
CONST -0.09 -0.11 1.21
x2 0.04 0.09 0.23 0.92
x3 -0.03 0.01 0.31 0.48 1.25
x10 -0.09 -0.10 -0.06 0.19 0.11 1.04
x12 -0.03 -0.04 0.05 0.00 0.04 0.28
Covariance Matrix
x12
--------
x12 0.93
TI
Parameter Specifications
LAMBDA-Y
y5
--------
x13 0
x14 1
LAMBDA-X
y1 y2 y3 y4
-------- -------- -------- --------
x5 2 0 0 0
x6 3 0 0 0
x9 4 0 0 0
x11 5 0 0 0
x7 0 6 0 0
x8 0 7 0 0
CONST 0 0 8 0
x2 0 0 9 0
x3 0 0 10 0
x10 0 0 0 11
x12 0 0 0 12
GAMMA
y1 y2 y3 y4
-------- -------- -------- --------
y5 13 14 15 16
PHI
y1 y2 y3 y4
-------- -------- -------- --------
y1 0
y2 17 0
y3 18 19 0
y4 20 21 22 0
PSI
y5
--------
23
THETA-EPS
x13 x14
-------- --------
24 25
THETA-DELTA
x5 x6 x9 x11 x7 x8
-------- -------- -------- -------- -------- --------
26 27 28 29 30 31
THETA-DELTA
CONST x2 x3 x10 x12
-------- -------- -------- -------- --------
32 33 34 35 36
W_A_R_N_I_N_G: PSI is not positive definite
W_A_R_N_I_N_G: THETA-DELTA is not positive definite
TI
W_A_R_N_I_N_G: The solution was found non-admissible after 50 iterations.
The following solution is preliminary and is provided only
for the purpose of tracing the source of the problem.
Setting AD> 50 or AD=OFF may solve the problem
LISREL Estimates(Intermediate Solution)
LAMBDA-Y
y5
--------
x13 1.00
x14 20.51
LAMBDA-X
y1 y2 y3 y4
-------- -------- -------- --------
x5 0.58 - - - - - -
x6 0.58 - - - - - -
x9 -1.19 - - - - - -
x11 -1.17 - - - - - -
x7 - - 0.41 - - - -
x8 - - 0.54 - - - -
CONST - - - - 0.15 - -
x2 - - - - 1.46 - -
x3 - - - - 0.31 - -
x10 - - - - - - 2.08
x12 - - - - - - 0.13
GAMMA
y1 y2 y3 y4
-------- -------- -------- --------
y5 -0.01 0.00 0.00 0.00
Covariance Matrix of ETA and KSI
y5 y1 y2 y3 y4
-------- -------- -------- -------- --------
y5 0.00
y1 -0.01 1.00
y2 0.00 0.37 1.00
y3 0.00 0.05 0.15 1.00
y4 0.00 0.09 -0.07 0.06 1.00
PHI
y1 y2 y3 y4
-------- -------- -------- --------
y1 1.00
y2 0.37 1.00
y3 0.05 0.15 1.00
y4 0.09 -0.07 0.06 1.00
PSI
y5
--------
0.00
W_A_R_N_I_N_G: PSI is not positive definite
THETA-EPS
x13 x14
-------- --------
0.15 2.59
THETA-DELTA
x5 x6 x9 x11 x7 x8
-------- -------- -------- -------- -------- --------
1.84 0.74 -0.01 0.05 0.08 -0.04
THETA-DELTA
CONST x2 x3 x10 x12
-------- -------- -------- -------- --------
1.19 -1.11 1.15 -3.22 0.91
W_A_R_N_I_N_G: THETA-DELTA is not positive definite
Goodness of Fit Statistics
Degrees of Freedom = 55
Minimum Fit Function Chi-Square = 318.41 (P = 0.0)
Normal Theory Weighted Least Squares Chi-Square = 318.12 (P = 0.0)
Estimated Non-centrality Parameter (NCP) = 263.12
90 Percent Confidence Interval for NCP = (210.75 ; 323.01)
Minimum Fit Function Value = 0.82
Population Discrepancy Function Value (F0) = 0.67
90 Percent Confidence Interval for F0 = (0.54 ; 0.83)
Root Mean Square Error of Approximation (RMSEA) = 0.11
90 Percent Confidence Interval for RMSEA = (0.099 ; 0.12)
P-Value for Test of Close Fit (RMSEA < 0.05) = 0.00
Expected Cross-Validation Index (ECVI) = 1.00
90 Percent Confidence Interval for ECVI = (0.87 ; 1.15)
ECVI for Saturated Model = 0.47
ECVI for Independence Model = 5.35
Chi-Square for Independence Model with 78 Degrees of Freedom = 2059.08
Independence AIC = 2085.08
Model AIC = 390.12
Saturated AIC = 182.00
Independence CAIC = 2149.67
Model CAIC = 569.00
Saturated CAIC = 634.15
Normed Fit Index (NFI) = 0.85
Non-Normed Fit Index (NNFI) = 0.81
Parsimony Normed Fit Index (PNFI) = 0.60
Comparative Fit Index (CFI) = 0.87
Incremental Fit Index (IFI) = 0.87
Relative Fit Index (RFI) = 0.78
Critical N (CN) = 101.89
Root Mean Square Residual (RMR) = 0.11
Standardized RMR = 0.099
Goodness of Fit Index (GFI) = 0.89
Adjusted Goodness of Fit Index (AGFI) = 0.81
Parsimony Goodness of Fit Index (PGFI) = 0.54
Time used: 0.016 Seconds


雷达卡





京公网安备 11010802022788号







