zhentao 发表于 2013-8-30 22:03 
麻烦你帮我跑一下下面的程序,看看在你哪里有没有结果出现,好吗?
data test;
The SAS System
The ARIMA Procedure
Warning: The value of NLAG is larger than 25% of the series length. The asymptotic approximations used for correlation based statistics and confidence intervals may be poor.
Name of Variable = y
Mean of Working Series 0.464619
Standard Deviation 1.951092
Number of Observations 50
Autocorrelation Check for White Noise
To Lag Chi-Square DF Pr > ChiSq Autocorrelations
6 68.62 6 <.0001 0.819 0.631 0.379 0.192 -0.003 -0.153
12 89.98 12 <.0001 -0.292 -0.333 -0.294 -0.224 -0.096 -0.002
18 92.97 18 <.0001 0.078 0.104 0.091 0.066 0.014 -0.100
24 141.26 24 <.0001 -0.238 -0.353 -0.369 -0.341 -0.254 -0.188
--------------------------------------------------------------------------------
The SAS System
The ARIMA Procedure
Warning: The value of NLAG is larger than 25% of the series length. The asymptotic approximations used for correlation based statistics and confidence intervals may be poor.
Name of Variable = y
Mean of Working Series 0.464619
Standard Deviation 1.951092
Number of Observations 50
Autocorrelation Check for White Noise
To Lag Chi-Square DF Pr > ChiSq Autocorrelations
6 68.62 6 <.0001 0.819 0.631 0.379 0.192 -0.003 -0.153
12 89.98 12 <.0001 -0.292 -0.333 -0.294 -0.224 -0.096 -0.002
18 92.97 18 <.0001 0.078 0.104 0.091 0.066 0.014 -0.100
24 141.26 24 <.0001 -0.238 -0.353 -0.369 -0.341 -0.254 -0.188
Conditional Least Squares Estimation
Parameter Estimate Standard Error t Value Approx
Pr > |t| Lag
MU -0.01923 0.81465 -0.02 0.9813 0
AR1,1 0.87776 0.07718 11.37 <.0001 1
Constant Estimate -0.00235
Variance Estimate 1.111553
Std Error Estimate 1.054302
AIC 149.1406
SBC 152.9647
Number of Residuals 50
* AIC and SBC do not include log determinant.
Correlations of Parameter
Estimates
Parameter MU AR1,1
MU 1.000 -0.182
AR1,1 -0.182 1.000
Autocorrelation Check of Residuals
To Lag Chi-Square DF Pr > ChiSq Autocorrelations
6 5.76 5 0.3304 0.058 0.272 -0.130 0.081 -0.052 -0.043
12 16.76 11 0.1151 -0.262 -0.299 -0.023 -0.080 0.111 0.029
18 20.50 17 0.2496 0.175 0.069 0.073 0.093 0.036 0.032
24 31.35 23 0.1144 -0.109 -0.246 -0.100 -0.115 -0.004 -0.158
Model for variable y
Estimated Mean -0.01923
Autoregressive Factors
Factor 1: 1 - 0.87776 B**(1)
Conditional Least Squares Estimation
Parameter Estimate Standard Error t Value Approx
Pr > |t| Lag
MU 0.01692 0.80707 0.02 0.9834 0
MA1,1 -0.04554 0.17292 -0.26 0.7934 1
AR1,1 0.86460 0.09619 8.99 <.0001 1
Constant Estimate 0.002291
Variance Estimate 1.13218
Std Error Estimate 1.06404
AIC 151.0073
SBC 156.7434
Number of Residuals 50
* AIC and SBC do not include log determinant.
Correlations of Parameter Estimates
Parameter MU MA1,1 AR1,1
MU 1.000 -0.107 -0.204
MA1,1 -0.107 1.000 0.538
AR1,1 -0.204 0.538 1.000
Autocorrelation Check of Residuals
To Lag Chi-Square DF Pr > ChiSq Autocorrelations
6 6.12 4 0.1902 0.013 0.285 -0.136 0.092 -0.053 -0.029
12 16.15 10 0.0954 -0.245 -0.286 -0.009 -0.087 0.111 0.016
18 19.46 16 0.2454 0.169 0.059 0.064 0.087 0.030 0.035
24 29.80 22 0.1233 -0.100 -0.239 -0.088 -0.116 0.004 -0.162
Model for variable y
Estimated Mean 0.016918
Autoregressive Factors
Factor 1: 1 - 0.8646 B**(1)
Moving Average Factors
Factor 1: 1 + 0.04554 B**(1)
--------------------------------------------------------------------------------
The SAS System
The AUTOREG Procedure
Dependent Variable y
--------------------------------------------------------------------------------
The SAS System
The AUTOREG Procedure
Ordinary Least Squares Estimates
SSE 190.337951 DFE 49
MSE 3.88445 Root MSE 1.97090
SBC 212.644785 AIC 210.732762
MAE 1.69468435 AICC 210.816096
MAPE 148.283003 HQC 211.460871
Durbin-Watson 0.2955 Regress R-Square 0.0000
Total R-Square 0.0000
Parameter Estimates
Variable DF Estimate Standard
Error t Value Approx
Pr > |t|
Intercept 1 0.4646 0.2787 1.67 0.1019
Estimates of Autocorrelations
Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
0 3.8068 1.000000 | |********************|
1 3.1196 0.819483 | |**************** |
2 2.4008 0.630667 | |************* |
Preliminary MSE 1.2309
Estimates of Autoregressive Parameters
Lag Coefficient Standard
Error t Value
1 -0.921495 0.144730 -6.37
2 0.124483 0.144730 0.86
--------------------------------------------------------------------------------
The SAS System
The AUTOREG Procedure
Yule-Walker Estimates
SSE 53.74603 DFE 47
MSE 1.14353 Root MSE 1.06936
SBC 158.386877 AIC 152.650808
MAE 0.8630812 AICC 153.172547
MAPE 148.56785 HQC 154.835136
Durbin-Watson 2.0252 Regress R-Square 0.0000
Total R-Square 0.7176
Parameter Estimates
Variable DF Estimate Standard
Error t Value Approx
Pr > |t|
Intercept 1 0.2405 0.7001 0.34 0.7327
--------------------------------------------------------------------------------
The SAS System
The AUTOREG Procedure