- . clear
- . use hh3
- . regress logg1018 a2000 labor2 children retire hh_income house houseloan e2002 c7001 savings a2003 age a2012 a2015 a2024 f2021 wo
- > rk a3003 workyear worktime f1001 f2001 f3001 cinsurance region a2022rural [pweight=swgt]
- (sum of wgt is 1.2329e+08)
- Linear regression Number of obs = 791
- F( 26, 764) = 7.23
- Prob > F = 0.0000
- R-squared = 0.2804
- Root MSE = 1.0826
- ------------------------------------------------------------------------------
- | Robust
- logg1018 | Coef. Std. Err. t P>|t| [95% Conf. Interval]
- -------------+----------------------------------------------------------------
- a2000 | -.0883657 .0890625 -0.99 0.321 -.2632019 .0864706
- labor2 | .0474589 .0907285 0.52 0.601 -.1306478 .2255656
- children | .1295626 .1023531 1.27 0.206 -.071364 .3304892
- retire | .1748803 .1194552 1.46 0.144 -.059619 .4093797
- hh_income | 1.38e-06 6.53e-07 2.11 0.035 9.84e-08 2.66e-06
- house | -.4324905 .1565911 -2.76 0.006 -.7398905 -.1250906
- houseloan | -.2520211 .1589961 -1.59 0.113 -.5641422 .0601
- e2002 | .0779077 .1429656 0.54 0.586 -.2027443 .3585596
- c7001 | .5523863 .1269436 4.35 0.000 .3031866 .801586
- savings | -.0677573 .0622234 -1.09 0.277 -.1899065 .0543918
- a2003 | .165831 .1305863 1.27 0.205 -.0905196 .4221816
- age | .003721 .0075394 0.49 0.622 -.0110795 .0185215
- a2012 | .1097514 .0450151 2.44 0.015 .0213834 .1981194
- a2015 | -.0821773 .0582571 -1.41 0.159 -.1965404 .0321858
- a2024 | .0510015 .05941 0.86 0.391 -.0656247 .1676278
- f2021 | -.1628977 .0615866 -2.65 0.008 -.2837968 -.0419986
- work | .1516389 .1904025 0.80 0.426 -.2221353 .5254131
- a3003 | -.1163044 .218655 -0.53 0.595 -.5455404 .3129316
- workyear | .016017 .0067794 2.36 0.018 .0027084 .0293255
- worktime | -.0000854 .0006073 -0.14 0.888 -.0012775 .0011067
- f1001 | .057384 .0754563 0.76 0.447 -.0907424 .2055103
- f2001 | -.1228524 .1916797 -0.64 0.522 -.4991339 .253429
- f3001 | .2420348 .1267654 1.91 0.057 -.006815 .4908846
- cinsurance | .11353 .1491954 0.76 0.447 -.1793515 .4064116
- region | .0349508 .0868177 0.40 0.687 -.1354787 .2053803
- a2022rural | -.1901757 .1768726 -1.08 0.283 -.5373896 .1570382
- _cons | 7.041723 .7055126 9.98 0.000 5.65675 8.426697
- ------------------------------------------------------------------------------
- . xi: regress logg1018 a2000 labor2 children retire hh_income house houseloan e2002 c7001 savings a2003 age a2012 a2015 a2024 f202
- > 1 work a3003 workyear worktime f1001 f2001 f3001 cinsurance region i.rural*a2022 [pweight=swgt]
- i.rural _Irural_0-1 (naturally coded; _Irural_0 omitted)
- i.rural*a2022 _IrurXa2022_# (coded as above)
- (sum of wgt is 1.2329e+08)
- Linear regression Number of obs = 791
- F( 28, 762) = 6.91
- Prob > F = 0.0000
- R-squared = 0.2882
- Root MSE = 1.0782
- -------------------------------------------------------------------------------
- | Robust
- logg1018 | Coef. Std. Err. t P>|t| [95% Conf. Interval]
- --------------+----------------------------------------------------------------
- a2000 | -.0820923 .0845383 -0.97 0.332 -.2480478 .0838632
- labor2 | .036054 .0886534 0.41 0.684 -.1379799 .2100879
- children | .1264729 .0993262 1.27 0.203 -.0685125 .3214583
- retire | .160383 .1172399 1.37 0.172 -.0697687 .3905346
- hh_income | 1.42e-06 6.71e-07 2.12 0.034 1.06e-07 2.74e-06
- house | -.3882593 .1641245 -2.37 0.018 -.7104493 -.0660694
- houseloan | -.2305242 .1524171 -1.51 0.131 -.5297315 .0686832
- e2002 | .0854729 .140618 0.61 0.543 -.1905718 .3615176
- c7001 | .5196565 .1277123 4.07 0.000 .2689468 .7703662
- savings | -.0660838 .0594367 -1.11 0.267 -.182763 .0505954
- a2003 | .1802882 .1279389 1.41 0.159 -.0708664 .4314428
- age | .0047518 .0071083 0.67 0.504 -.0092025 .018706
- a2012 | .1280514 .0537575 2.38 0.017 .022521 .2335818
- a2015 | -.0654256 .0591491 -1.11 0.269 -.1815402 .050689
- a2024 | .0365402 .0595249 0.61 0.539 -.0803121 .1533925
- f2021 | -.1597722 .0606721 -2.63 0.009 -.2788764 -.0406679
- work | .178329 .1886879 0.95 0.345 -.1920808 .5487387
- a3003 | -.1254408 .2191348 -0.57 0.567 -.5556205 .3047389
- workyear | .0171254 .0067552 2.54 0.011 .0038644 .0303863
- worktime | -.000036 .0005968 -0.06 0.952 -.0012077 .0011356
- f1001 | .0530592 .0734673 0.72 0.470 -.0911632 .1972816
- f2001 | -.1327798 .1901254 -0.70 0.485 -.5060116 .240452
- f3001 | .24055 .1261088 1.91 0.057 -.007012 .488112
- cinsurance | .0904654 .1478294 0.61 0.541 -.1997359 .3806667
- region | .0639742 .0800329 0.80 0.424 -.0931369 .2210854
- _Irural_1 | -.4517703 .303656 -1.49 0.137 -1.047872 .1443315
- a2022 | .0788755 .1641699 0.48 0.631 -.2434036 .4011545
- _IrurXa2022_1 | .1830922 .3539682 0.52 0.605 -.5117764 .8779608
- _cons | 6.752954 .7906833 8.54 0.000 5.200778 8.30513
- -------------------------------------------------------------------------------
上面是你第一个命令和第二个命令的结果,从结果的变量个数你都可以看出,变量个数
都是不想等的,所以结果必然不同。第一个表只有a2022rural ,而第二个表有
_Irural_1,a2022,_IrurXa2022_1。你可以通过看数据文件,里面可以看到_Irural_1
和_IrurXa2022_1的具体数值。
下面两个语句是等价的:
- . regress logg1018 a2000 labor2 children retire hh_income house houseloan e2002 c7001 savings a2003 age a2012 a2015 a2024 f2021 work a3003 workyear worktime f1001 f2001 f3001 cinsurance region a2022#rural [pweight=swgt]
- (sum of wgt is 1.2329e+08)
- Linear regression Number of obs = 791
- F( 28, 762) = 6.91
- Prob > F = 0.0000
- R-squared = 0.2882
- Root MSE = 1.0782
- ------------------------------------------------------------------------------
- | Robust
- logg1018 | Coef. Std. Err. t P>|t| [95% Conf. Interval]
- -------------+----------------------------------------------------------------
- a2000 | -.0820923 .0845383 -0.97 0.332 -.2480478 .0838632
- labor2 | .036054 .0886534 0.41 0.684 -.1379799 .2100879
- children | .1264729 .0993262 1.27 0.203 -.0685125 .3214583
- retire | .160383 .1172399 1.37 0.172 -.0697687 .3905346
- hh_income | 1.42e-06 6.71e-07 2.12 0.034 1.06e-07 2.74e-06
- house | -.3882593 .1641245 -2.37 0.018 -.7104493 -.0660694
- houseloan | -.2305242 .1524171 -1.51 0.131 -.5297315 .0686832
- e2002 | .0854729 .140618 0.61 0.543 -.1905718 .3615176
- c7001 | .5196565 .1277123 4.07 0.000 .2689468 .7703662
- savings | -.0660838 .0594367 -1.11 0.267 -.182763 .0505954
- a2003 | .1802882 .1279389 1.41 0.159 -.0708664 .4314428
- age | .0047518 .0071083 0.67 0.504 -.0092025 .018706
- a2012 | .1280514 .0537575 2.38 0.017 .022521 .2335818
- a2015 | -.0654256 .0591491 -1.11 0.269 -.1815402 .050689
- a2024 | .0365402 .0595249 0.61 0.539 -.0803121 .1533925
- f2021 | -.1597722 .0606721 -2.63 0.009 -.2788764 -.0406679
- work | .178329 .1886879 0.95 0.345 -.1920808 .5487387
- a3003 | -.1254408 .2191348 -0.57 0.567 -.5556205 .3047389
- workyear | .0171254 .0067552 2.54 0.011 .0038644 .0303863
- worktime | -.000036 .0005968 -0.06 0.952 -.0012077 .0011356
- f1001 | .0530592 .0734673 0.72 0.470 -.0911632 .1972816
- f2001 | -.1327798 .1901254 -0.70 0.485 -.5060116 .240452
- f3001 | .24055 .1261088 1.91 0.057 -.007012 .488112
- cinsurance | .0904654 .1478294 0.61 0.541 -.1997359 .3806667
- region | .0639742 .0800329 0.80 0.424 -.0931369 .2210854
- |
- a2022#rural |
- 0 1 | -.4517703 .303656 -1.49 0.137 -1.047872 .1443315
- 1 0 | .0788755 .1641699 0.48 0.631 -.2434036 .4011545
- 1 1 | -.1898026 .2035583 -0.93 0.351 -.5894043 .2097991
- |
- _cons | 6.752954 .7906833 8.54 0.000 5.200778 8.30513
- ------------------------------------------------------------------------------
- . regress logg1018 a2000 labor2 children retire hh_income house houseloan e2002 c7001 savings a2003 age a2012 a2015 a2024 f2021 work a3003 workyear worktime f1001 f2001 f3001 cinsurance region i.a2022#i.rural [pweight=swgt]
- (sum of wgt is 1.2329e+08)
- Linear regression Number of obs = 791
- F( 28, 762) = 6.91
- Prob > F = 0.0000
- R-squared = 0.2882
- Root MSE = 1.0782
- ------------------------------------------------------------------------------
- | Robust
- logg1018 | Coef. Std. Err. t P>|t| [95% Conf. Interval]
- -------------+----------------------------------------------------------------
- a2000 | -.0820923 .0845383 -0.97 0.332 -.2480478 .0838632
- labor2 | .036054 .0886534 0.41 0.684 -.1379799 .2100879
- children | .1264729 .0993262 1.27 0.203 -.0685125 .3214583
- retire | .160383 .1172399 1.37 0.172 -.0697687 .3905346
- hh_income | 1.42e-06 6.71e-07 2.12 0.034 1.06e-07 2.74e-06
- house | -.3882593 .1641245 -2.37 0.018 -.7104493 -.0660694
- houseloan | -.2305242 .1524171 -1.51 0.131 -.5297315 .0686832
- e2002 | .0854729 .140618 0.61 0.543 -.1905718 .3615176
- c7001 | .5196565 .1277123 4.07 0.000 .2689468 .7703662
- savings | -.0660838 .0594367 -1.11 0.267 -.182763 .0505954
- a2003 | .1802882 .1279389 1.41 0.159 -.0708664 .4314428
- age | .0047518 .0071083 0.67 0.504 -.0092025 .018706
- a2012 | .1280514 .0537575 2.38 0.017 .022521 .2335818
- a2015 | -.0654256 .0591491 -1.11 0.269 -.1815402 .050689
- a2024 | .0365402 .0595249 0.61 0.539 -.0803121 .1533925
- f2021 | -.1597722 .0606721 -2.63 0.009 -.2788764 -.0406679
- work | .178329 .1886879 0.95 0.345 -.1920808 .5487387
- a3003 | -.1254408 .2191348 -0.57 0.567 -.5556205 .3047389
- workyear | .0171254 .0067552 2.54 0.011 .0038644 .0303863
- worktime | -.000036 .0005968 -0.06 0.952 -.0012077 .0011356
- f1001 | .0530592 .0734673 0.72 0.470 -.0911632 .1972816
- f2001 | -.1327798 .1901254 -0.70 0.485 -.5060116 .240452
- f3001 | .24055 .1261088 1.91 0.057 -.007012 .488112
- cinsurance | .0904654 .1478294 0.61 0.541 -.1997359 .3806667
- region | .0639742 .0800329 0.80 0.424 -.0931369 .2210854
- |
- a2022#rural |
- 0 1 | -.4517703 .303656 -1.49 0.137 -1.047872 .1443315
- 1 0 | .0788755 .1641699 0.48 0.631 -.2434036 .4011545
- 1 1 | -.1898026 .2035583 -0.93 0.351 -.5894043 .2097991
- |
- _cons | 6.752954 .7906833 8.54 0.000 5.200778 8.30513
- ------------------------------------------------------------------------------


雷达卡
!
京公网安备 11010802022788号







