楼主: dannin
7632 15

[下载]Springer08《高级数据挖掘技术》(Advanced Data Mining Techniques) [推广有奖]

  • 2关注
  • 17粉丝

VIP

澹宁居士

已卖:12847份资源

教授

57%

还不是VIP/贵宾

-

威望
0
论坛币
398854 个
通用积分
14.3431
学术水平
7 点
热心指数
14 点
信用等级
7 点
经验
22327 点
帖子
363
精华
1
在线时间
2050 小时
注册时间
2006-6-28
最后登录
2025-10-7

楼主
dannin 发表于 2008-1-5 00:15:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Advanced Data Mining Techniques
by David L. Olson (Author), Dursun Delen (Author)
Advanced Data Mining Techniques
  • Paperback: 180 pages
  • Publisher: Springer; 1 edition (February 1, 2008)
  • Language: English
  • Book Description
    This book covers the fundamental concepts of data mining, to demonstrate the potential of gathering large sets of data, and analyzing these data sets to gain useful business understanding. The book is organized in three parts. Part I introduces concepts. Part II describes and demonstrates basic data mining algorithms. It also contains chapters on a number of different techniques often used in data mining. Part III focusses on business applications of data mining. Methods are presented with simple examples, applications are reviewed, and relativ advantages are evaluated.
  • 186453.pdf (1.07 MB, 需要: 20 个论坛币)
  • Contents
    Part I INTRODUCTION
    1 Introduction...............................................................................................3

    What is Data Mining?..........................................................................5
    What is Needed to Do Data Mining.....................................................5
    Business Data Mining..........................................................................7
    Data Mining Tools ...............................................................................8
    Summary..............................................................................................8
    2 Data Mining Process.................................................................................9
    CRISP-DM ..........................................................................................9
    Business Understanding.............................................................11
    Data Understanding ...................................................................11
    Data Preparation ........................................................................12
    Modeling ...................................................................................15
    Evaluation..................................................................................18
    Deployment................................................................................18
    SEMMA.............................................................................................19
    Steps in SEMMA Process..........................................................20
    Example Data Mining Process Application.......................................22
    Comparison of CRISP & SEMMA....................................................27
    Handling Data....................................................................................28
    Summary............................................................................................34
    3 Memory-Based Reasoning Methods.......................................................39
    Matching ............................................................................................40
    Weighted Matching....................................................................43
    Distance Minimization.......................................................................44
    Software.............................................................................................50
    Summary............................................................................................50
    Appendix: Job Application Data Set..................................................51
    Part II DATA MINING METHODS AS TOOLS
    4 Association Rules in Knowledge Discovery........................................... 53

    Market-Basket Analysis.....................................................................55
    Market Basket Analysis Benefits...............................................56
    Demonstration on Small Set of Data ......................................... 57
    Real Market Basket Data ................................................................... 59
    The Counting Method Without Software ..................................62
    Conclusions........................................................................................68
    5 Fuzzy Sets in Data Mining...................................................................... 69
    Fuzzy Sets and Decision Trees .......................................................... 71
    Fuzzy Sets and Ordinal Classification ............................................... 75
    Fuzzy Association Rules....................................................................79
    Demonstration Model ................................................................80
    Computational Results...............................................................84
    Testing .......................................................................................84
    Inferences...................................................................................85
    Conclusions........................................................................................86
    6 Rough Sets .............................................................................................. 87
    A Brief Theory of Rough Sets ........................................................... 88
    Information System....................................................................88
    Decision Table ...........................................................................89
    Some Exemplary Applications of Rough Sets................................... 91
    Rough Sets Software Tools................................................................93
    The Process of Conducting Rough Sets Analysis.............................. 93
    1 Data Pre-Processing................................................................94
    2 Data Partitioning .....................................................................95
    3 Discretization ..........................................................................95
    4 Reduct Generation ..................................................................97
    5 Rule Generation and Rule Filtering ........................................ 99
    6 Apply the Discretization Cuts to Test Dataset...................... 100
    7 Score the Test Dataset on Generated Rule set (and
    measuring the prediction accuracy) ...................................... 100
    8 Deploying the Rules in a Production System ....................... 102
    A Representative Example...............................................................103
    Conclusion .......................................................................................109
    7 Support Vector Machines ..................................................................... 111
    Formal Explanation of SVM............................................................112
    Primal Form.............................................................................114
    Contents XI
    Dual Form................................................................................114
    Soft Margin..............................................................................114
    Non-linear Classification .................................................................115
    Regression................................................................................116
    Implementation ........................................................................116
    Kernel Trick.............................................................................117
    Use of SVM – A Process-Based Approach .....................................118
    Support Vector Machines versus Artificial Neural Networks .........121
    Disadvantages of Support Vector Machines....................................122
    8 Genetic Algorithm Support to Data Mining .........................................125
    Demonstration of Genetic Algorithm ..............................................126
    Application of Genetic Algorithms in Data Mining ........................131
    Summary..........................................................................................132
    Appendix: Loan Application Data Set.............................................133
    9 Performance Evaluation for Predictive Modeling ................................137
    Performance Metrics for Predictive Modeling ................................137
    Estimation Methodology for Classification Models ........................140
    Simple Split (Holdout).....................................................................140
    The k-Fold Cross Validation............................................................141
    Bootstrapping and Jackknifing ........................................................143
    Area Under the ROC Curve.............................................................144
    Summary..........................................................................................147
    Part III APPLICATIONS
    10 Applications of Methods ....................................................................151

    Memory-Based Application.............................................................151
    Association Rule Application ..........................................................153
    Fuzzy Data Mining ..........................................................................155
    Rough Set Models............................................................................155
    Support Vector Machine Application ..............................................157
    Genetic Algorithm Applications......................................................158
    Japanese Credit Screening .......................................................158
    Product Quality Testing Design...............................................159
    Customer Targeting .................................................................159
    Medical Analysis .....................................................................160
    Predicting the Financial Success of Hollywood Movies ................. 162
    Problem and Data Description.................................................163
    Comparative Analysis of the Data Mining Methods ............... 165
    Conclusions......................................................................................167
    Bibliography ............................................................................................ 169
    Index ........................................................................................................ 177
  • 二维码

    扫码加我 拉你入群

    请注明:姓名-公司-职位

    以便审核进群资格,未注明则拒绝

    关键词:Data Mining Techniques Technique Advanced Springer 数据 Advanced Mining Data Techniques

    本帖被以下文库推荐

    独立之精神,自由之思想。

    沙发
    bookbug(真实交易用户) 发表于 2008-1-5 09:03:00

    好像重复了但是我不知道你们谁在前

    价钱也不一样

    藤椅
    zsxdcfv(未真实交易用户) 发表于 2008-2-16 15:33:00
    怎么买不了啊~~

    板凳
    xiaowenzi22(真实交易用户) 发表于 2008-2-20 23:05:00
    好书!!
    小蚊子乐园:http://blog.sina.com.cn/m/xiaowenzi22

    报纸
    lmng(真实交易用户) 发表于 2008-4-3 17:35:00

    成功下载,好像不错,起码是新出版的书

    地板
    xiaolu1998(未真实交易用户) 发表于 2008-4-6 20:52:00
    sssss

    7
    yinjj(未真实交易用户) 发表于 2008-4-8 16:49:00
    钱不够啊

    8
    理性男(未真实交易用户) 发表于 2008-9-2 11:03:00
    好贵。。。。。。。。。。

    9
    ls1216(未真实交易用户) 发表于 2008-10-28 16:35:00

    10
    william003(未真实交易用户) 发表于 2008-12-2 16:01:00

    谢谢ls1216.

    您需要登录后才可以回帖 登录 | 我要注册

    本版微信群
    加好友,备注cda
    拉您进交流群
    GMT+8, 2025-12-24 18:33