楼主: 邓贵大
2610 3

[问答] Inter-subject CV calculation for a Crossover Design [推广有奖]

  • 0关注
  • 18粉丝

博士生

59%

还不是VIP/贵宾

-

威望
0
论坛币
88 个
通用积分
2.1142
学术水平
182 点
热心指数
178 点
信用等级
166 点
经验
9462 点
帖子
296
精华
0
在线时间
335 小时
注册时间
2009-6-17
最后登录
2014-9-20

楼主
邓贵大 发表于 2014-1-3 03:35:42 |AI写论文
785论坛币
感谢神:新年伊始便让我有论坛币来象大家请教!
It is well-known that the inter-subject cv of a crossover design can be derived from the variance estimate of the SUBJECT effect. For example,
  1. data test;
  2. input Subject Period Treatment $ Sequence $ AUCt;
  3. lnAUCt = log(AUCt);
  4. datalines;
  5. 1 1 R RT 8551.8
  6. 1 2 T RT 4538.3
  7. 3 1 R RT 3498.7
  8. 3 2 T RT 10710.5
  9. 6 1 R RT 6744.1
  10. 6 2 T RT 5244.8
  11. 10 1 R RT 4723.4
  12. 10 2 T RT 2275.2
  13. 12 1 R RT 9048.8
  14. 12 2 T RT 6669.6
  15. 14 1 R RT 3817.9
  16. 14 2 T RT 3841.7
  17. 15 1 R RT 9801.1
  18. 15 2 T RT 3286.6
  19. 18 1 R RT 13406.3
  20. 18 2 T RT 7070.3
  21. 22 1 R RT 7644.5
  22. 22 2 T RT 10794.6
  23. 23 1 R RT 6152.1
  24. 23 2 T RT 3448.3
  25. 25 1 R RT 10842.8
  26. 25 2 T RT 11058.5
  27. 2 1 T TR 2199.6
  28. 2 2 R TR 11036.4
  29. 4 1 T TR 3419.9
  30. 4 2 R TR 6447.8
  31. 5 1 T TR 4523.4
  32. 5 2 R TR 5190.9
  33. 8 1 T TR 7043.7
  34. 8 2 R TR 3786.6
  35. 9 1 T TR 3948.0
  36. 9 2 R TR 7159.8
  37. 11 1 T TR 1768.7
  38. 11 2 R TR 2380.9
  39. 13 1 T TR 8922.0
  40. 13 2 R TR 2443.8
  41. 16 1 T TR 4159.6
  42. 16 2 R TR 3217.2
  43. 17 1 T TR 5566.6
  44. 17 2 R TR 9262.4
  45. 20 1 T TR 5030.5
  46. 20 2 R TR 6086.9
  47. 21 1 T TR 3989.6
  48. 21 2 R TR 3019.1
  49. 24 1 T TR 5519.4
  50. 24 2 R TR 5583.8
  51. 26 1 T TR 5879.7
  52. 26 2 R TR 5539.5
  53. ;
  54. proc mixed data=test method=type3;
  55. class subject sequence period treatment;
  56. model lnAUCt = Sequence Period Treatment;
  57. random Subject(Sequence);
  58. run;
复制代码

The estimated intersubject-cv = sqrt(exp(0.009933)-1), where 0.009933 is obtained from the ODS output table 'Covariance Parameter Estimate'.
Note that the estimate is consistent regardless of the METHOD= option in the PROC MIXED statement for a balanced dataset.
However, different METHOD= options lead to different answers when the dataset is NOT balanced. For example, if you delete the last observation from the sample dataset, then methods TYPE1/TYPE3/ML/REML/MIVQUE will have different variance estimates.
Question: Is there a preferred METHOD= option in PROC MIXED for intersubject CV estimation? Why?

关键词:Calculation Crossover Subject ulation Design crossover derived example Design design
Be still, my soul: the hour is hastening on
When we shall be forever with the Lord.
When disappointment, grief and fear are gone,
Sorrow forgot, love's purest joys restored.

沙发
ch03en12tong 发表于 2014-1-9 10:11:16
楼主,请问intra-subject variation怎么计算呢?尤其是higher-order crossover clinical trial,因为有预试验中,我想知道个体内变异估算样本量,谢谢!
因为专业所以专业

藤椅
邓贵大 发表于 2014-1-9 21:46:05
ch03en12tong 发表于 2014-1-9 10:11
楼主,请问intra-subject variation怎么计算呢?尤其是higher-order crossover clinical trial,因为有预试验 ...
http://hansheng.gsm.pku.edu.cn/pdf/2002/power.pdf Equation (2)
Be still, my soul: the hour is hastening on
When we shall be forever with the Lord.
When disappointment, grief and fear are gone,
Sorrow forgot, love's purest joys restored.

板凳
ch03en12tong 发表于 2014-1-20 16:32:31
邓贵大 发表于 2014-1-9 21:46
http://hansheng.gsm.pku.edu.cn/pdf/2002/power.pdf Equation (2)
谢谢楼主的回复,我好好学习下,如果有不懂的再向您请教!谢谢!
因为专业所以专业

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2025-12-24 22:22