楼主: SPSSCHEN
1569 2

How to Estimate Following Model using R /MLwiN? [推广有奖]

  • 0关注
  • 0粉丝

已卖:144份资源

博士生

22%

还不是VIP/贵宾

-

TA的文库  其他...

Voxco NewOccidental

Case Study NewOccidental

NoSQL NewOccidental

威望
0
论坛币
946 个
通用积分
0.6700
学术水平
7 点
热心指数
2 点
信用等级
0 点
经验
2052 点
帖子
306
精华
0
在线时间
42 小时
注册时间
2005-9-25
最后登录
2022-10-25

楼主
SPSSCHEN 发表于 2014-1-8 11:14:45 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
  • tj = Belta0j + Belta1j * timetj + etj              
  • Belta0j  = Gamma00 + Gamma01 * X1j + Gamma02 * X2tj + u0j   
  • Belta1j  = Gamma10 + Gamma11 * X3j + u1j               
t and j are indexes for time and individual;

It seems that HLM does not support to include the predictor from lower-level in the higher level mode. My first questions are:Can I specify an exact model as the above in HLM so all the lower-level predictors could be included in the high level model, and How can we estimate the following model using R /MLwiN?
  • Ytj = Belta0j + Belta1j * timetj + β2j * X2tj +etj                  
  • Belta0j  = Gamma00 + Gamma01 * X1j + u0j                                   
  • Belta1j  = Gamma10 + Gamma11 * X3j + u1j                                    
  • Belta1j  = Gamma20                                                               

Thank you again!



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:following estimate follow Using MLwiN individual following included support higher

本帖被以下文库推荐

沙发
SPSSCHEN 发表于 2014-1-8 11:25:03

Two Multilevel Modeling Techniques for Analyzing Comparative Longitudinal Survey Datasets


Malcolm Fairbrother


School of Geographical Sciences, University of Bristol


30 March 2013




http://seis.bris.ac.uk/~ggmhf/MHF.MLM-longit.2013.pdf


藤椅
SPSSCHEN 发表于 2014-1-8 11:31:53

y_tj = B_0 + B_1*X_j + B_2*X_tj + B_3*time_tj + B_4*X_j*time_tj + u_1j*time_tj + u_0j + e_tj

So there's an overall intercept, slope on X_j, slope on X_tj, slope on time, slope on the interaction between X_j and time, and three random erros (residual error, a random intercept by j, and a random time slope by j).

In R, this could be fitted using: lmer(y ~ Xtj + time*Xj + (time | group), data=dat) or using other functions, such as MCMCglmm.

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-30 02:42