楼主: Trevor
10687 3

[问答] Error: could not find function "backtest" [推广有奖]

  • 1关注
  • 4粉丝

已卖:1100份资源

副教授

26%

还不是VIP/贵宾

-

TA的文库  其他...

Probability NewOccidental

RapidMiner NewOccidental

Machine Learning

威望
1
论坛币
3509 个
通用积分
0.7297
学术水平
25 点
热心指数
17 点
信用等级
24 点
经验
5225 点
帖子
412
精华
2
在线时间
176 小时
注册时间
2005-5-4
最后登录
2024-4-7

楼主
Trevor 发表于 2014-1-10 02:59:50 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Dear

The code I copied from http://faculty.chicagobooth.edu/ ... oTS/ch3Rscripts.txt  and output are as follows

Coulld you please help fix the issue such as[Error: could not find function 'backtest']. Thanks
================================================================================
### Chapter 3 ####
### Petro Price
da=read.table("C:/Downloads/ch3data/w-petroprice.txt",header=T)
da1=read.table("C:/Downloads/ch3data/w-gasoline.txt")
pgs=log(da1[,1])
pus=log(da$US)
tdx=c(1:717)/52+1997  # calendar time
par(mfcol=c(2,1))
plot(tdx,pgs,xlab='year',ylab='ln(price)',type='l')
title(main='(a) Gasoline')
plot(tdx,pus,xlab='year',ylab='ln(price)',type='l')
title(main='(b) Crude oil')
dpgs=diff(pgs)
acf(dpgs,lag=20)
pacf(dpgs,lag=20)
m1=ar(diff(pgs),method='mle')
m1$order
t.test(dpgs)
m1=arima(dpgs,order=c(5,0,0),include.mean=F)
m1
m1=arima(dpgs,order=c(5,0,0),include.mean=F,fixed=c(NA,NA,NA,0,NA))
m1
tsdiag(m1,gof=20)
dpus=diff(pus)
m3=lm(dpgs~-1+dpus)
summary(m3)
acf(m3$residuals,lag=20)
pacf(m3$residuals,lag=20)
m4=ar(m3$residuals,method='mle')
m4$order
m4=arima(dpgs,order=c(6,0,0),include.mean=F,xreg=dpus)
m4
m4=arima(dpgs,order=c(5,0,0),include.mean=F,xreg=dpus)
m4
m4=arima(dpgs,order=c(5,0,0),include.mean=F,xreg=dpus,fixed=c(NA,NA,NA,0,NA,NA))
m4
tsdiag(m4,gof=20)
c1=c(NA,NA,NA,0,NA)
pm1=backtest(m1,dpgs,316,1,fixed=c1,inc.mean=F)
c4=c(NA,NA,NA,0,NA,NA)
pm4=backtest(m4,dpgs,316,1,xre=dpus,inc.mean=F,fixed=c4)
tdx=tdx[2:717]
pm4fit=dpgs[317:716]-pm4$error
pm1fit=dpgs[317:716]-pm1$error
plot(tdx[317:716],dpgs[317:716],xlab='year',ylab='growth',type='l')
points(tdx[317:716],pm1fit,pch='*')
plot(tdx[317:716],dpgs[317:716],xlab='year',ylab='growth',type='l')
points(tdx[317:716],pm4fit,pch='*')
m6=lm(dpgs[2:716]~-1+dpus[1:715])
summary(m6)
acf(m6$residuals,lag=20)
pacf(m6$residuals,lag=20)
m7=ar(m6$residuals,method='mle')
m7$order
m7=arima(dpgs[2:716],order=c(9,0,0),include.mean=F,xreg=dpus[1:715])
m7
m7=arima(dpgs[2:716],order=c(9,0,0),include.mean=F,xreg=dpus[1:715],fixed=c(NA,NA,NA,0,NA,0,0,0,NA,NA))
m7
tsdiag(m7,gof=20)
c7=c(NA,NA,NA,0,NA,0,0,0,NA,NA)
pm7=backtest(m7,dpgs[2:716],315,1,xre=dpus[1:715],inc.mean=F,fixed=c7)

======================================================

R version 3.0.2 (2013-09-25) -- "Frisbee Sailing"
Copyright (C) 2013 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

  Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> ### Chapter 3 ####
> ### Petro Price
> da=read.table("C:/Downloads/ch3data/w-petroprice.txt",header=T)
> da1=read.table("C:/Downloads/ch3data/w-gasoline.txt")
> pgs=log(da1[,1])
> pus=log(da$US)
> tdx=c(1:717)/52+1997  # calendar time
> par(mfcol=c(2,1))
> plot(tdx,pgs,xlab='year',ylab='ln(price)',type='l')
> title(main='(a) Gasoline')
> plot(tdx,pus,xlab='year',ylab='ln(price)',type='l')
> title(main='(b) Crude oil')
> dpgs=diff(pgs)
> acf(dpgs,lag=20)
> pacf(dpgs,lag=20)
> m1=ar(diff(pgs),method='mle')
> m1$order
[1] 5
> t.test(dpgs)

        One Sample t-test

data:  dpgs
t = 1.3062, df = 715, p-value = 0.1919
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-0.0005536374  0.0027549956
sample estimates:
  mean of x
0.001100679

> m1=arima(dpgs,order=c(5,0,0),include.mean=F)
> m1

Call:
arima(x = dpgs, order = c(5, 0, 0), include.mean = F)

Coefficients:
         ar1     ar2     ar3      ar4      ar5
      0.5073  0.0788  0.1355  -0.0360  -0.0862
s.e.  0.0372  0.0417  0.0415   0.0417   0.0372

sigma^2 estimated as 0.0003262:  log likelihood = 1857.85,  aic = -3703.71
> m1=arima(dpgs,order=c(5,0,0),include.mean=F,fixed=c(NA,NA,NA,0,NA))
Warning message:
In arima(dpgs, order = c(5, 0, 0), include.mean = F, fixed = c(NA,  :
  some AR parameters were fixed: setting transform.pars = FALSE
> m1

Call:
arima(x = dpgs, order = c(5, 0, 0), include.mean = F, fixed = c(NA, NA, NA,
    0, NA))

Coefficients:
         ar1     ar2     ar3  ar4      ar5
      0.5036  0.0789  0.1220    0  -0.1009
s.e.  0.0370  0.0418  0.0385    0   0.0330

sigma^2 estimated as 0.0003265:  log likelihood = 1857.48,  aic = -3704.96
> tsdiag(m1,gof=20)
> dpus=diff(pus)
> m3=lm(dpgs~-1+dpus)
> summary(m3)

Call:
lm(formula = dpgs ~ -1 + dpus)

Residuals:
      Min        1Q    Median        3Q       Max
-0.076149 -0.008834  0.000365  0.009441  0.151350

Coefficients:
     Estimate Std. Error t value Pr(>|t|)   
dpus  0.28703    0.01507   19.05   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.01839 on 715 degrees of freedom
Multiple R-squared:  0.3366,    Adjusted R-squared:  0.3357
F-statistic: 362.8 on 1 and 715 DF,  p-value: < 2.2e-16

> acf(m3$residuals,lag=20)
> pacf(m3$residuals,lag=20)
> m4=ar(m3$residuals,method='mle')
> m4$order
[1] 6
> m4=arima(dpgs,order=c(6,0,0),include.mean=F,xreg=dpus)
> m4

Call:
arima(x = dpgs, order = c(6, 0, 0), xreg = dpus, include.mean = F)

Coefficients:
         ar1     ar2     ar3     ar4      ar5      ar6    dpus
      0.3953  0.1634  0.0946  0.0297  -0.0873  -0.0525  0.1927
s.e.  0.0389  0.0400  0.0404  0.0405   0.0400   0.0373  0.0136

sigma^2 estimated as 0.0002524:  log likelihood = 1949.61,  aic = -3883.21
> m4=arima(dpgs,order=c(5,0,0),include.mean=F,xreg=dpus)
> m4

Call:
arima(x = dpgs, order = c(5, 0, 0), xreg = dpus, include.mean = F)

Coefficients:
         ar1     ar2     ar3     ar4      ar5    dpus
      0.4022  0.1621  0.0899  0.0209  -0.1086  0.1914
s.e.  0.0387  0.0401  0.0403  0.0400   0.0371  0.0136

sigma^2 estimated as 0.0002531:  log likelihood = 1948.62,  aic = -3883.23
> m4=arima(dpgs,order=c(5,0,0),include.mean=F,xreg=dpus,fixed=c(NA,NA,NA,0,NA,NA))
Warning message:
In arima(dpgs, order = c(5, 0, 0), include.mean = F, xreg = dpus,  :
  some AR parameters were fixed: setting transform.pars = FALSE
> m4

Call:
arima(x = dpgs, order = c(5, 0, 0), xreg = dpus, include.mean = F, fixed = c(NA,
    NA, NA, 0, NA, NA))

Coefficients:
         ar1     ar2     ar3  ar4      ar5    dpus
      0.4037  0.1642  0.0961    0  -0.1014  0.1911
s.e.  0.0386  0.0399  0.0386    0   0.0345  0.0136

sigma^2 estimated as 0.0002532:  log likelihood = 1948.48,  aic = -3884.95
> tsdiag(m4,gof=20)
> c1=c(NA,NA,NA,0,NA)
> pm1=backtest(m1,dpgs,316,1,fixed=c1,inc.mean=F)
Error: could not find function "backtest"
> c4=c(NA,NA,NA,0,NA,NA)
> pm4=backtest(m4,dpgs,316,1,xre=dpus,inc.mean=F,fixed=c4)
Error: could not find function "backtest"
> tdx=tdx[2:717]
> pm4fit=dpgs[317:716]-pm4$error
Error: object 'pm4' not found
> pm1fit=dpgs[317:716]-pm1$error
Error: object 'pm1' not found
> plot(tdx[317:716],dpgs[317:716],xlab='year',ylab='growth',type='l')
> points(tdx[317:716],pm1fit,pch='*')
Error in xy.coords(x, y) : object 'pm1fit' not found
> plot(tdx[317:716],dpgs[317:716],xlab='year',ylab='growth',type='l')
> points(tdx[317:716],pm4fit,pch='*')
Error in xy.coords(x, y) : object 'pm4fit' not found
> m6=lm(dpgs[2:716]~-1+dpus[1:715])
> summary(m6)

Call:
lm(formula = dpgs[2:716] ~ -1 + dpus[1:715])

Residuals:
      Min        1Q    Median        3Q       Max
-0.088318 -0.011145 -0.000011  0.011391  0.161679

Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
dpus[1:715]  0.18560    0.01716   10.81   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.02093 on 714 degrees of freedom
Multiple R-squared:  0.1408,    Adjusted R-squared:  0.1395
F-statistic:   117 on 1 and 714 DF,  p-value: < 2.2e-16

> acf(m6$residuals,lag=20)
> pacf(m6$residuals,lag=20)
> m7=ar(m6$residuals,method='mle')
> m7$order
[1] 9
> m7=arima(dpgs[2:716],order=c(9,0,0),include.mean=F,xreg=dpus[1:715])
> m7

Call:
arima(x = dpgs[2:716], order = c(9, 0, 0), xreg = dpus[1:715], include.mean = F)

Coefficients:
         ar1     ar2     ar3      ar4      ar5      ar6      ar7     ar8
      0.4559  0.0888  0.1679  -0.0468  -0.0653  -0.0195  -0.0362  0.0797
s.e.  0.0425  0.0410  0.0423   0.0415   0.0416   0.0414   0.0410  0.0408
          ar9  dpus[1:715]
      -0.0882       0.0454
s.e.   0.0373       0.0174

sigma^2 estimated as 0.0003204:  log likelihood = 1861.55,  aic = -3701.1
> m7=arima(dpgs[2:716],order=c(9,0,0),include.mean=F,xreg=dpus[1:715],fixed=c(NA,NA,NA,0,NA,0,0,0,NA,NA))
Warning message:
In arima(dpgs[2:716], order = c(9, 0, 0), include.mean = F, xreg = dpus[1:715],  :
  some AR parameters were fixed: setting transform.pars = FALSE
> m7

Call:
arima(x = dpgs[2:716], order = c(9, 0, 0), xreg = dpus[1:715], include.mean = F,
    fixed = c(NA, NA, NA, 0, NA, 0, 0, 0, NA, NA))

Coefficients:
         ar1     ar2     ar3  ar4      ar5  ar6  ar7  ar8      ar9  dpus[1:715]
      0.4544  0.0877  0.1415    0  -0.0830    0    0    0  -0.0640       0.0406
s.e.  0.0427  0.0413  0.0393    0   0.0345    0    0    0   0.0318       0.0176

sigma^2 estimated as 0.000323:  log likelihood = 1858.7,  aic = -3703.4
> tsdiag(m7,gof=20)
> c7=c(NA,NA,NA,0,NA,0,0,0,NA,NA)
> pm7=backtest(m7,dpgs[2:716],315,1,xre=dpus[1:715],inc.mean=F,fixed=c7)
Error: could not find function "backtest"
>



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:function backtest Error Could test function please Error

沙发
qoiqpwqr 发表于 2014-1-10 08:22:09
看一下原书是不是加载了其他的package

藤椅
yywan0913 在职认证  发表于 2014-1-10 10:43:44
看了下  还真有backtest包


事先library(backtest)或者require(backtest)就行了。。。。前提是安装了backtest包install.packages("backtest")



类型问题可以查查此函数的根源就可以了
已有 1 人评分学术水平 热心指数 收起 理由
Lisrelchen + 5 + 5 热心帮助其他会员

总评分: 学术水平 + 5  热心指数 + 5   查看全部评分

是什么给了你自信

板凳
Trevor 发表于 2014-1-10 11:58:43
多谢诸位啦!

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2025-12-26 17:14