楼主: tedzzx
18762 66

[下载]和R软件很好结合的关于时间序列的教材——英文版,老师推荐的 [推广有奖]

  • 1关注
  • 0粉丝

已卖:176份资源

大专生

75%

还不是VIP/贵宾

-

威望
0
论坛币
1485 个
通用积分
0
学术水平
1 点
热心指数
1 点
信用等级
0 点
经验
395 点
帖子
41
精华
0
在线时间
74 小时
注册时间
2007-3-23
最后登录
2020-9-12

楼主
tedzzx 发表于 2008-1-24 18:06:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

Time Series Analysis and Its Applications:With R Examples

 

190363.rar (6.59 MB, 需要: 5 个论坛币)

 

 

第一次发书,本因该不收钱的,但是自己实在没钱了,也看不到别人的书。大家体谅一下了

4楼5楼有此附件的说明

[此贴子已经被pine888于2008-1-26 5:51:34编辑过]

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:时间序列 r软件 英文版 Applications Time Series 老师 教材 软件 英文版 序列

沙发
tedzzx 发表于 2008-1-24 21:22:00

再具体介绍一下:

Time Series Analysis and Its Applications:With R Examples / by Robert H. Shumway, David S. Stoffer

藤椅
momozilla 发表于 2008-1-24 21:28:00
好人啊
这书我找了很久了,非常感谢

板凳
bioengineer 发表于 2008-1-25 17:24:00

補充說明 table of content

This is a very good textbook in Time series, not only for statistician but also engineer in digital signal processing.

Thanks for sharing this book. The price is really very nice for buyers.

Time Series Analysis
and Its Applications
With R Examples
Second Edition

Contents
1 Characteristics of Time Series 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . .
1.2 The Nature of Time Series Data . . . . .. . . . . 4
1.3 Time Series Statistical Models . . . . . . ..  . 11
1.4 Measures of Dependence: Autocorrelation
and Cross-Correlation . . . . . . . . .  . . . . . 18
1.5 Stationary Time Series . . . . . . . . . . . . 23
1.6 Estimation of Correlation . . . . . . . . . . . 29
1.7 Vector-Valued andMultidimensional Series . . . . 34
Problems . . . . . . . . . . . . . . . . . . . . . 40


2 Time Series Regression and Exploratory Data Analysis 48
2.1 Introduction . . . . . . . . . . . . . . . . . . . 48
2.2 Classical Regression in the Time Series Context . . . . . 49
2.3 Exploratory Data Analysis . .  . . . . . . . . . . . 57
2.4 Smoothing in the Time Series Context . . .  . . . . 71
Problems . . . . . . . . . . . . . . . . . . 79
3 ARIMA Models 84
3.1 Introduction . . . . . . . . . . . . . . . . . 84
3.2 Autoregressive Moving Average Models . . .. . . . . 85
3.3 Difference Equations . . . . . . . . . . . . . . . 98
3.4 Autocorrelation and Partial Autocorrelation Functions .  . 103
3.5 Forecasting . . . .  . . . . . . . . . . 110
3.6 Estimation . . . .. . . . . . . . 122
3.7 Integrated Models for Nonstationary Data . . .. . . 140
3.8 Building ARIMA Models . . . . . . . 143
3.9 Multiplicative Seasonal ARIMA Models . .  . . . 154
Problems . . . . . . . . . . . . . . 165
4 Spectral Analysis and Filtering 174
4.1 Introduction . . . . .. . . . . . . . 174
4.2 Cyclical Behavior and Periodicity . . . . . . . . . 176
4.3 The Spectral Density . . . . . . . . . . . . 181

4.4 Periodogramand Discrete Fourier Transform . . . . . 187
4.5 Nonparametric Spectral Estimation . . . . . . . . . 197
4.6 Multiple Series and Cross-Spectra . . . . . . . . 215
4.7 Linear Filters . . . . .  . . . . . . . . . . . 220
4.8 Parametric Spectral Estimation . . . . . . . . . . 228
4.9 Dynamic Fourier Analysis andWavelets . . . . . . 232

4.10 Lagged Regression Models . . . . . . . . . . . . . 245
4.11 Signal Extraction and Optimum Filtering . . . . . . . . 251
4.12 Spectral Analysis ofMultidimensional Series . .  . . . . 256
Problems . . . . . . . . . . . . 258

5 Additional Time Domain Topics 271
5.1 Introduction . . . . . . . . . . . . . . . . . . 271
5.2 LongMemory ARMA and Fractional Differencing . . . . . . . 271
5.3 GARCHModels . . . . . . . . . .. . . . . . 280
5.4 ThresholdModels . . . . . . . . . . . . . 289
5.5 Regression with Autocorrelated Errors . . . . . . . 293
5.6 Lagged Regression: Transfer Function Modeling . .  . . . 295
5.7 Multivariate ARMAXModels . . . . . . .. . 302
Problems . . . . . . . . . . . .. . . . . . . . . 320
6 State-Space Models 324
6.1 Introduction . . . . .. . . . . . . . . . . . 324
6.2 Filtering, Smoothing, and Forecasting . . . .  . . . . 330
6.3 MaximumLikelihood Estimation . . .. . . . 339
6.4 Missing Data Modifications . . . . . . . . . 348
6.5 StructuralModels: Signal Extraction and Forecasting . .  . 352
6.6 ARMAX Models in State-Space Form . . . . . . . . 355
6.7 Bootstrapping State-Space Models . . . . . . . . 357
6.8 Dynamic LinearModels with Switching . . . . . . . 362
6.9 Nonlinear and Non-normal State-Space
Models UsingMonte CarloMethods . . . . .. . . . . . 376
6.10 Stochastic Volatility . . . . . . . . . . . . . . . . . 388
6.11 State-Space and ARMAX Models for
Longitudinal Data Analysis . . . . . . .  . . . . 394
Problems . . . . . . . . .. . . . . . . . . . 404
7 Statistical Methods in the Frequency Domain 412
7.1 Introduction . . . . . . . . .  . . . . . 412
7.2 SpectralMatrices and Likelihood Functions .  . . 416
7.3 Regression for Jointly Stationary Series . .  . . 417
7.4 Regression with Deterministic Inputs . . . . . . . . . . . 426
7.5 Random Coefficient Regression . . .  . . 434
7.6 Analysis of Designed Experiments . . . . . . 438
7.7 Discrimination and Cluster Analysis .  . . . . . . . . . 449

7.8 Principal Components and Factor Analysis . . . . .  . . 464
7.9 The Spectral Envelope . . . . . . . . . . . . . . . . 479
Problems . . . . . . . . . . .  . . . . . . . . . . . 495
Appendix A: Large Sample Theory 501
A.1 ConvergenceModes . . . . . . . . . . . . 501
A.2 Central Limit Theorems . . . . . . .. . . . . . . 509
A.3 TheMean and Autocorrelation Functions . . . . . 513
Appendix B: Time Domain Theory 522
B.1 Hilbert Spaces and the Projection Theorem . .  . 522
B.2 Causal Conditions for ARMAModels . . .  . . . 526
B.3 Large Sample Distribution of the AR(p)
Conditional Least Squares Estimators . . .  . . . 528
B.4 TheWold Decomposition . . . .   . . 532
Appendix C: Spectral Domain Theory 534
C.1 Spectral Representation Theorem . . . . . .  . . 534
C.2 Large Sample Distribution of the DFT and Smoothed Periodogram . . . . . . . . . . 539
C.3 The ComplexMultivariate Normal Distribution . . . . . . 550
References 555
Index 569

Biomedical engineering Digital signal processing Biostatistics

报纸
bioengineer 发表于 2008-1-25 17:33:00

【书名】 Time Series Analysis and Its Applications:With R Examples
【作者】Robert H. Shumway, David S. Stoffer
【出版社】Springer
【版本】2
【出版日期】2006
【文件格式】PDF

【文件大小】RAR 6.58mb
【页数】576
【ISBN出版号】
【资料类别】统计学,

【市面定价】65.66 USD
【扫描版还是影印版】original
【是否缺页】完整
【关键词】Time series, R, S-plus
【目录】見楼上

Biomedical engineering Digital signal processing Biostatistics

地板
平常 发表于 2008-1-28 20:02:00
过年了,花点钱吧

7
xxin_bj 发表于 2008-1-29 09:12:00
骗人,不花钱的东西。你竟然收钱!

8
momozilla 发表于 2008-1-30 01:46:00
唉,人家已经说了是急需金币。。。
我也有过这种时候,就算是互相支持吧

9
xxin_bj 发表于 2008-3-7 14:20:00

不要钱的东西干嘛要钱,还装!!

10
binchoutan 发表于 2008-3-10 09:10:00
很想看,但是没钱。。。穷啊

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2025-12-25 23:55