- n = 1000
- d = 4
- b = matrix(1:d,nrow=d)
- x = matrix(rnorm(n*d),nrow=n)
- pr = 1/(exp(-(0.5 + x%*%b))+1)
- y1 = (pr > runif(n))
- fit1 = glm(y1~x,family=binomial(link="logit"))
- beta1 = fit1$coefficients
-
- y2 = 0.5 + x%*%b + 0.1*rnorm(n)
- fit2 = lm(y2~x)
- beta2 = fit2$coefficients
- cbind(beta1,beta2)
- beta1 beta2
- (Intercept) 0.6168650 0.5036494
- x1 0.9691072 0.9964494
- x2 2.2784266 1.9999576
- x3 3.2810038 3.0007856
- x4 4.2815293 3.9990854
请教各位老师同学,在R中,有没有一个好的方法可以提高估计的精度,使估计的bias更小?
谢谢!


雷达卡




京公网安备 11010802022788号







