Let W(t) be a standard Brownian Motion starting from zero and M(t) be its running maximum, M(t)=max B(s), 0≤s≤t
For fixed time t compute the density of random variable M(t)-B(t)
求解啊帮帮忙
|
楼主: 乳大未必有奶
|
5605
9
[金融经济学] 金融随机分析习题求解啊!布朗运动的,大神们帮帮忙~ |
|
小学生 71%
-
|
回帖推荐Chemist_MZ 发表于2楼 查看完整内容 ok, I will give a breif solution,
1. For any two random variables X and Y (in our case, M(t) and B(t)), given their joint density f(X,Y), what's the density of their difference Z=X-Y?
The distribution function of Z, F(z)=P(Z=y is for our special case M(t)>=B(t), and since B starts from 0, M(t)>=0)
F(z)=∫_0^inf[ ∫_x-z^x f(x,y) dy]dx
f(z)=F'(z)=∫_0^inf f(x,x-z) dx
2. Check your ...
| ||
|
|
| ||||||||||||||
|
扫头像关注公众号“二点三西格玛”衍生品定价与风险管理
|
||||||||||||||
|
扫头像关注公众号“二点三西格玛”衍生品定价与风险管理
|
|
| ||
加好友,备注jr京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明


