楼主: ReneeBK
1793 1

[问答] ridge regression multicolinearity? [推广有奖]

  • 1关注
  • 62粉丝

VIP

已卖:4897份资源

学术权威

14%

还不是VIP/贵宾

-

TA的文库  其他...

R资源总汇

Panel Data Analysis

Experimental Design

威望
1
论坛币
49635 个
通用积分
55.6937
学术水平
370 点
热心指数
273 点
信用等级
335 点
经验
57805 点
帖子
4005
精华
21
在线时间
582 小时
注册时间
2005-5-8
最后登录
2023-11-26

楼主
ReneeBK 发表于 2014-4-13 05:10:42 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Hello,

I have a problem with multicolinearity in a multiple regression analysis. Two of my predictors and the outcome are correlated at .8, VIF's are around 4-6, Tolerances at .2 - .3 and Condition index at 23. My dataset has 72 cases, 5 continuous predictors (excluding the controls, with them 13 variables, dummy coded categorical controls - age, tenure etc.)

I am running SPSS 17. I understand that in order to avoid the multicolinearity ridge regression can be used, with the CATREG  command. However, I do not know what options should I choose (I have read discretization option multiply, but besides this?), how to get the p values for the predictor's weights, and most importantly how to interpret the results.

I appreciate if anyone can suggest a way to handle this or to find more information about the procedure (I've tried googling and this much I came with).



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:regression regressio regress Linear multi understand continuous controls running problem

沙发
ReneeBK 发表于 2014-4-13 05:11:33
In addition to the problems you mention, you are over-fitting your model (i.e., you have too many variables for the amount of data).  For a good overview of over-fitting, check out Mike Babyak's nice article.

   http://www.psychosomaticmedicine.org/content/66/3/411.short

Have to get to a meeting, so no time to address the other problems right now!

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2025-12-30 23:25