楼主: jiaolitao
8056 2

[问答] matlab中fmincon函数如何调用?? [推广有奖]

  • 14关注
  • 3粉丝

硕士生

96%

还不是VIP/贵宾

-

威望
0
论坛币
66 个
通用积分
0.0623
学术水平
2 点
热心指数
2 点
信用等级
0 点
经验
1513 点
帖子
116
精华
0
在线时间
192 小时
注册时间
2011-11-30
最后登录
2015-6-25

楼主
jiaolitao 发表于 2014-5-8 23:45:10 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
在matlab中进行线性规划的时候,用到fmincon函数,请问这个函数如何调用?在command中直接写,会有warning,这样得到的结果正确吗?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:fmincon函数 fmincon MATLAB atlab matla matlab 如何

沙发
matlab-007 发表于 2015-2-25 19:49:24
函数  fmincon
格式  x = fmincon(fun,x0,A,b)
x = fmincon(fun,x0,A,b,Aeq,beq)
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub)
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
[x,fval] = fmincon(…)
[x,fval,exitflag] = fmincon(…)
[x,fval,exitflag,output] = fmincon(…)
[x,fval,exitflag,output,lambda] = fmincon(…)
[x,fval,exitflag,output,lambda,grad] = fmincon(…)
[x,fval,exitflag,output,lambda,grad,hessian] = fmincon(…)

参数说明:
fun为目标函数,它可用前面的方法定义;
x0为初始值;
A、b满足线性不等式约束 ,若没有不等式约束,则取A=[ ],b=[ ];
Aeq、beq满足等式约束 ,若没有,则取Aeq=[ ],beq=[ ];
lb、ub满足 ,若没有界,可设lb=[ ],ub=[ ];
nonlcon的作用是通过接受的向量x来计算非线性不等约束 和等式约束 分别在x处的估计C和Ceq,通过指定函数柄来使用,如:>>x = fmincon(@myfun,x0,A,b,Aeq,beq,lb,ub,@mycon),先建立非线性约束函数,并保存为mycon.m:function [C,Ceq] = mycon(x)
C = …
% 计算x处的非线性不等约束 的函数值。
Ceq = …
% 计算x处的非线性等式约束 的函数值。
lambda是Lagrange乘子,它体现哪一个约束有效。
output输出优化信息;
grad表示目标函数在x处的梯度;
hessian表示目标函数在x处的Hessiab值。

注意:
1. fmincon 函数提供了大型优化算法和中型优化算法。默认时,若在 fun 函数中提供了梯度(options 参数的 GeadObj 设置为 'on'),并且只有上下界存在或只有等式约束,fmincon 函数将选择大型算法。 当既有等式约束又有梯度约束时,使用中型算法。
2. fmincon 函数的中型算法一般是使用序列二次规划。在每一步迭代中求解二次规划子问题,并用 BFGS 法更新 Lagrangian 乘子和 Hessian 矩阵。
3. fmincon 函数的大型算法采用了subspace trust region 优化算法。这种算法是把目标函数在点x的邻域泰勒展开(x可以认为是人为提供的初始猜测),这个展开的邻域就是所谓的trust region,泰勒展开进行到二阶项为止。
4. fmincon 函数可能会给出局部最优解,这与初始值的选取有关。

藤椅
liuxin9023 发表于 2015-2-25 19:53:55
warning可能是得到了局部最优解 这种问题对于fmincon这样的优化函数很正常 没什么特别的

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2026-1-3 00:03