模型一 Dependent Variable: LNAGDP Method: Least Squares Date: 06/26/14 Time: 15:54 Sample (adjusted): 1994 2012 Included observations: 19 after adjustments Convergence achieved after 25 iterations Coefficient Std. Error t-Statistic Prob. C 8.262453 3.616566 2.284613 0.0413 LNAE 1.294044 1.841233 0.702814 0.4956 LNPE 1.477055 1.085774 1.360371 0.1987 LNJE -1.404816 0.521449 -2.694064 0.0195 LNSE -0.805940 0.446903 -1.803388 0.0965 LNUE 1.136832 0.268495 4.234094 0.0012 AR(1) 0.500398 0.168471 2.970223 0.0117 R-squared 0.991844 Mean dependent var 9.086476 Adjusted R-squared 0.987766 S.D. dependent var 0.780001 S.E. of regression 0.086275 Akaike info criterion -1.785238 Sum squared resid 0.089321 Schwarz criterion -1.437287 Log likelihood 23.95976 Hannan-Quinn criter. -1.726351 F-statistic 243.2103 Durbin-Watson stat 1.745413 Prob(F-statistic) 0.000000 模型二 Dependent Variable: LNAGDP Method: Least Squares Date: 06/26/14 Time: 15:53 Sample: 1993 2012 Included observations: 20 Coefficient Std. Error t-Statistic Prob. C 3.943226 4.412852 0.893578 0.3867 LNAE 3.638870 1.026134 3.546194 0.0032 LNPE 2.540210 1.336884 1.900097 0.0782 LNJE -1.932351 0.455687 -4.240522 0.0008 LNSE -0.195630 0.294393 -0.664520 0.5172 LNUE 0.833254 0.308134 2.704195 0.0171 R-squared 0.984237 Mean dependent var 9.008703 Adjusted R-squared 0.978608 S.D. dependent var 0.835077 S.E. of regression 0.122139 Akaike info criterion -1.123995 Sum squared resid 0.208850 Schwarz criterion -0.825275 Log likelihood 17.23995 Hannan-Quinn criter. -1.065682 F-statistic 174.8356 Durbin-Watson stat 1.100060 Prob(F-statistic) 0.000000 求解:模型一是不是可以叫做自回归模型?模型二存在自相关,添加ar(1)后变成模型一,但是各变量的系数显著性不好。那应该用哪一个模型? |


雷达卡



京公网安备 11010802022788号







