楼主: kzen
37980 94

[学科前沿] [转帖]国外统计书目+免费教材讲义 [推广有奖]

  • 0关注
  • 4粉丝

已卖:2776份资源

本科生

82%

还不是VIP/贵宾

-

威望
0
论坛币
6807 个
通用积分
8.0974
学术水平
14 点
热心指数
25 点
信用等级
5 点
经验
1166 点
帖子
126
精华
0
在线时间
0 小时
注册时间
2008-4-27
最后登录
2009-5-5

楼主
kzen 发表于 2008-5-1 07:50:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Reference:
<a href="[url=http://hk.mathphy.googlepages.com/puremath.htm&quot;><a href=" http:="" hk.mathphy.googlepages.com="" puremath.htm
http://hk.mathphy.googlepages.com/puremath.htm
<a]http://hk.mathphy.googlepages.com/puremath.htm">http://hk.mathphy.googlepages.com/puremath.htm
<a[/url] href="[url=http://hbpms.blogspot.com/">http://hbpms.blogspot.com/
<a]http://hbpms.blogspot.com/">http://hbpms.blogspot.com/
<a[/url] href="http://mathphy.110mb.com/puremath.htm" target="_blank">http://mathphy.110mb.com/puremath.htm
<a href="http://hk.geocities.com/mathphyweb/puremath.htm" target="_blank">http://hk.geocities.com/mathphyweb/puremath.htm

Stage 2

[url=]Probability and Statistics[/url]:
Well, being a well educated mathematician, you should have basic knowledge of statistics. Things to learn: basic probability theory (independent events, conditional probability, Bayes' Theorem), random variables (r.v.), expectation, convergence of r.v., maximum likelihood estimator, basic hypothesis testing, p-values are the basic. If you want to go a bit further, check out linear regression, linear model, residual, categorical predictors, logistic regression, ANOVA (analysis of variance) etc.        </a</a</a</a</a
Probability:
Statistics:
Second course in Statistics:

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:统计书 introduction Applications Introductory Mathematical target 统计

已有 3 人评分学术水平 热心指数 收起 理由
Qing1989 + 1 提供了很好的学习资料
llllbbin + 1 HAOERB
gongha25852 + 1 + 1 精彩帖子

总评分: 学术水平 + 1  热心指数 + 3   查看全部评分

沙发
kzen 发表于 2008-5-1 08:05:00
Stage 3

Statistical Inference (optional):
Build upon stage 2 statistics, you will learn here the Cramer-Rao bound, uniform minimum variance unbiased estimators, Neyman-Pearson theory, Bayesian inference, basic bootstrap and robustness, introductory non-parametric (including the sign test, Wilcoxon signed rank test, McNemar's chi-square test, Wald-Wolfowitz runs test, Mann-Whitney U test, Kolmogorov-Smirnov two-samples test, Kruskal-Wallis analysis of ranks, Spearman's R and Kendal's Tau), etc. Note a few texts say they are aimed at graduated level, partly because people from other fields only learn this material in graduated schools, as a result the texts have to set up basic probability and statistics (you have done it, stage 2 stuff) for them. Probability and Stochastic (Random) Processes (optional):
Conditional expectation, Poisson process, Markov chains, renewal theory, queueing theory, reliability theory, Brownian motion and stationary processes. This topic is particularly useful for electrical and computer engineers, actuarial study, finance or things like that. See also left material from stage 2 probability. If you want to learn this with measure, see stage 4 probability list.

藤椅
kzen 发表于 2008-5-1 08:06:00
Stage 4

Probability (optional):
These days, studying probability without measure is like studying physics without calculus. If you have done some baby measure theory in stage 3, you are probably ready for the followings.

Check out Probability Theory As Extended Logic for collected probability papers.

Probaility built upon Measure Theory:

Stochastic Processes:

Stochastic Analysis:


板凳
kzen 发表于 2008-5-1 08:06:00
Stage 4

Statistics (optional):
May I put a quotation here:
If the results disagree with informed opinion, do not admit a simple logical interpretation, and do not show up clearly in a graphical presentation, they are probably wrong. There is no magic about numerical methods, and many ways in which they can break down. They are a valuable aid to the interpretation of data, not sausage machines automatically transforming bodies of numbers into packets of scientific fact.
(by F.H.C. Marriott, cited in Johnson and Wichern)

In general (mainly inference):

Statistical Models and Regression:

Multivariate Analysis:

Bayesian Statistics:

Nonparametric Statistics:

Categorical Data Analysis:

Data Mining:

Time Series:

Simulation and the Monte Carlo Method:

Further Reading and Reference:


已有 1 人评分经验 论坛币 学术水平 热心指数 收起 理由
xiaowenzi22 + 100 + 100 + 5 + 5 精彩帖子

总评分: 经验 + 100  论坛币 + 100  学术水平 + 5  热心指数 + 5   查看全部评分

报纸
csxljy 发表于 2008-5-2 02:32:00
好人呐!赞一个!

[此贴子已经被作者于2008-5-2 2:32:24编辑过]

地板
qdlichun 发表于 2008-5-2 08:28:00

好啊

7
经管学人 发表于 2008-5-2 09:03:00

好的.

谢谢楼主啊!

8
zbclzf 发表于 2008-5-2 13:30:00
强悍的无话可说

9
pipperoo 发表于 2008-5-2 13:42:00

很强大

lord dont slow me down

10
jjpanda1111 发表于 2008-5-2 14:13:00

好文章,谢谢楼主!

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-6 00:42