总体来说,MASE是相对最为重要的指标。当采用平均绝对误差(MAE)作为模型预测准确性的相对指标的话,如果MASE>1, 则表明对于样本之外的预测比基于样本本身的朴素预测要差。也即如果我们期望样本之外的资料能非常接近样本本身的话,当出现MASE>1的情况,则对样本之外的预测值是不可取的(因为我们仅仅知道基于样本本身的朴素预测,而不知道样本之外的情况)。英文原文:
MASE>1 implies that the actual forecast does worse out of sample than a naive forecast did in sample, in terms of mean absolute error. Thus if mean absolute error is the relevant measure of forecast accuracy (which depends on the problem at hand), MASE>1 suggests that the actual forecast should be discarded in favour of a naive forecast if we expect the out-of-sample data to be quite like the in-sample data (because we only know how well a naive forecast performed in sample, not out of sample).
其中,朴素预测包括naïve预测(即 ARIMA(0,1,0)模型,也即最简单的随机游走模型)和snaïve预测(即ARIMA(0,0,0)(0,1,0)m模型,也即最简单的季节随机游走模型),可以采用以下方法初步验证naïve预测和snaïve预测(存在微小的误差)
accuracy (naive(ts,h=12))
naive1 <- Arima(ts,order=c(0,1,0))
accuracy (forecast(naive1, h=12))
accuracy (snaive(ts,h=12))
naive2 <- Arima(ts,order=c(0,0,0),seasonal = c(0, 1, 0))
accuracy (forecast(naive2, h=12))




雷达卡



京公网安备 11010802022788号







