楼主: prestige
6692 26

[学科前沿] [下载]07年新书《随机模拟算法与分析》 [推广有奖]

  • 0关注
  • 4粉丝

已卖:3064份资源

讲师

80%

还不是VIP/贵宾

-

威望
0
论坛币
48201 个
通用积分
39.2415
学术水平
47 点
热心指数
26 点
信用等级
44 点
经验
8145 点
帖子
158
精华
6
在线时间
219 小时
注册时间
2008-1-1
最后登录
2025-12-2

楼主
prestige 发表于 2008-5-14 11:35:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
<p><strong>Stochastic Simulation  Algorithms and Analysis</strong></p><p></p><p> 212449.rar (6.26 MB, 需要: 20 个论坛币) 本附件包括:
  • Stochastic Simulation Algorithms and Analysis.pdf
</p><p> </p><p>Authors<br/>Søren Asmussen Peter W. Glynn<br/>Department of Theoretical Statistics Department of Management Science<br/>Department of Mathematical Sciences and Engineering<br/>Aarhus University Institute for Computational and<br/>Ny Munkegade Mathematical Engineering<br/>DK–8000 Aarhus C, Denmark Stanford University<br/><a href="mailto:asmus@imf.au.dk">asmus@imf.au.dk</a> Stanford, CA 94305–4026<br/><a href="mailto:glynn@stanford.edu">glynn@stanford.edu</a></p><p>Stochastic Simulation  Algorithms and Analysis</p><p>Preface v<br/>Notation xii<br/>I What This Book Is About 1<br/>1 An Illustrative Example: The Single-Server Queue . . . 1<br/>2 TheMonte CarloMethod . . . . . . . . . . . . . . . . 5<br/>3 Second Example: Option Pricing . . . . . . . . . . . . . 6<br/>4 Issues Arising in the Monte Carlo Context . . . . . . . 9<br/>5 Further Examples . . . . . . . . . . . . . . . . . . . . . 13<br/>6 Introductory Exercises . . . . . . . . . . . . . . . . . . 25<br/>Part A: General Methods and Algorithms 29<br/>II Generating Random Objects 30<br/>1 Uniform RandomVariables . . . . . . . . . . . . . . . . 30<br/>2 NonuniformRandomVariables . . . . . . . . . . . . . . 36<br/>3 Multivariate Random Variables . . . . . . . . . . . . . 49<br/>4 Simple Stochastic Processes . . . . . . . . . . . . . . . 59<br/>5 Further Selected Random Objects . . . . . . . . . . . . 62<br/>6 Discrete-Event Systems and GSMPs . . . . . . . . . . 65<br/>III Output Analysis 68<br/>1 Normal Confidence Intervals . . . . . . . . . . . . . . . 68<br/>Contents ix<br/>2 Two-Stage and Sequential Procedures . . . . . . . . . . 71<br/>3 Computing Smooth Functions of Expectations . . . . . 73<br/>4 Computing Roots of Equations Defined by Expectations 77<br/>5 Sectioning, Jackknifing, and Bootstrapping . . . . . . . 80<br/>6 Variance/Bias Trade-Off Issues . . . . . . . . . . . . . 86<br/>7 Multivariate Output Analysis . . . . . . . . . . . . . . 88<br/>8 Small-Sample Theory . . . . . . . . . . . . . . . . . . . 90<br/>9 Simulations Driven by Empirical Distributions . . . . . 91<br/>10 The Simulation Budget . . . . . . . . . . . . . . . . . . 93<br/>IV Steady-State Simulation 96<br/>1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 96<br/>2 Formulas for the Bias and Variance . . . . . . . . . . . 102<br/>3 Variance Estimation for Stationary Processes . . . . . 104<br/>4 The RegenerativeMethod . . . . . . . . . . . . . . . . 105<br/>5 TheMethod of BatchMeans . . . . . . . . . . . . . . . 109<br/>6 Further Refinements . . . . . . . . . . . . . . . . . . . 110<br/>7 Duality Representations . . . . . . . . . . . . . . . . . 118<br/>8 Perfect Sampling . . . . . . . . . . . . . . . . . . . . . 120<br/>V Variance-Reduction Methods 126<br/>1 Importance Sampling . . . . . . . . . . . . . . . . . . . 127<br/>2 ControlVariates . . . . . . . . . . . . . . . . . . . . . . 138<br/>3 Antithetic Sampling . . . . . . . . . . . . . . . . . . . . 144<br/>4 ConditionalMonte Carlo . . . . . . . . . . . . . . . . . 145<br/>5 Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . 147<br/>6 Common RandomNumbers . . . . . . . . . . . . . . . 149<br/>7 Stratification . . . . . . . . . . . . . . . . . . . . . . . . 150<br/>8 Indirect Estimation . . . . . . . . . . . . . . . . . . . . 155<br/>VI Rare-Event Simulation 158<br/>1 Efficiency Issues . . . . . . . . . . . . . . . . . . . . . . 158<br/>2 Examples of Efficient Algorithms: Light Tails . . . . . 163<br/>3 Examples of Efficient Algorithms: Heavy Tails . . . . . 173<br/>4 Tail Estimation . . . . . . . . . . . . . . . . . . . . . . 178<br/>5 Conditioned Limit Theorems . . . . . . . . . . . . . . . 183<br/>6 Large-Deviations or Optimal-Path Approach . . . . . . 187<br/>7 Markov Chains and the h-Transform . . . . . . . . . . 190<br/>8 Adaptive Importance Sampling via the Cross-Entropy<br/>Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 195<br/>9 Multilevel Splitting . . . . . . . . . . . . . . . . . . . . 201<br/>VII Derivative Estimation 206<br/>1 Finite Differences . . . . . . . . . . . . . . . . . . . . . 209<br/>2 Infinitesimal Perturbation Analysis . . . . . . . . . . . 214<br/>x Contents<br/>3 The Likelihood Ratio Method: Basic Theory . . . . . . 220<br/>4 The Likelihood Ratio Method: Stochastic Processes . . 224<br/>5 Examples and SpecialMethods . . . . . . . . . . . . . 231<br/>VIII Stochastic Optimization 242<br/>1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 242<br/>2 Stochastic Approximation Algorithms . . . . . . . . . . 243<br/>3 ConvergenceAnalysis . . . . . . . . . . . . . . . . . . . 245<br/>4 Polyak–RuppertAveraging . . . . . . . . . . . . . . . . 250<br/>5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 253<br/>Part B: Algorithms for Special Models 259<br/>IX Numerical Integration 260<br/>1 Numerical Integration in One Dimension . . . . . . . . 260<br/>2 Numerical Integration in Higher Dimensions . . . . . . 263<br/>3 Quasi-Monte Carlo Integration . . . . . . . . . . . . . . 265<br/>X Stochastic Differential Equations 274<br/>1 Generalities about Stochastic Process Simulation . . . 274<br/>2 BrownianMotion . . . . . . . . . . . . . . . . . . . . . 276<br/>3 The Euler Scheme for SDEs . . . . . . . . . . . . . . . 280<br/>4 The Milstein and Other Higher-Order Schemes . . . . . 287<br/>5 ConvergenceOrders for SDEs: Proofs . . . . . . . . . . 292<br/>6 Approximate Error Distributions for SDEs . . . . . . . 298<br/>7 Multidimensional SDEs . . . . . . . . . . . . . . . . . . 300<br/>8 Reflected Diffusions . . . . . . . . . . . . . . . . . . . . 301<br/>XI Gaussian Processes 306<br/>1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 306<br/>2 Cholesky Factorization. Prediction . . . . . . . . . . . 311<br/>3 Circulant-Embeddings . . . . . . . . . . . . . . . . . . 314<br/>4 Spectral Simulation. FFT . . . . . . . . . . . . . . . . 316<br/>5 Further Algorithms . . . . . . . . . . . . . . . . . . . . 320<br/>6 Fractional BrownianMotion . . . . . . . . . . . . . . . 321<br/>XII Lévy Processes 325<br/>1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 325<br/>2 First Remarks on Simulation . . . . . . . . . . . . . . . 331<br/>3 Dealing with the Small Jumps . . . . . . . . . . . . . . 334<br/>4 Series Representations . . . . . . . . . . . . . . . . . . 338<br/>5 Subordination . . . . . . . . . . . . . . . . . . . . . . . 343<br/>6 Variance Reduction . . . . . . . . . . . . . . . . . . . . 344<br/>7 TheMultidimensional Case . . . . . . . . . . . . . . . 346<br/>8 Lévy-Driven SDEs . . . . . . . . . . . . . . . . . . . . . 348<br/>Contents xi<br/>XIII Markov Chain Monte Carlo Methods 350<br/>1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 350<br/>2 Application Areas . . . . . . . . . . . . . . . . . . . . . 352<br/>3 The Metropolis–Hastings Algorithm . . . . . . . . . . . 361<br/>4 Special Samplers . . . . . . . . . . . . . . . . . . . . . 367<br/>5 The Gibbs Sampler . . . . . . . . . . . . . . . . . . . . 375<br/>XIV Selected Topics and Extended Examples 381<br/>1 Randomized Algorithms for Deterministic Optimization 381<br/>2 Resampling and Particle Filtering . . . . . . . . . . . . 385<br/>3 Counting andMeasuring . . . . . . . . . . . . . . . . . 391<br/>4 MCMC for the Ising Model and Square Ice . . . . . . . 395<br/>5 Exponential Change of Measure in Markov-Modulated<br/>Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 403<br/>6 Further Examples of Change of Measure . . . . . . . . 407<br/>7 Black-BoxAlgorithms . . . . . . . . . . . . . . . . . . . 416<br/>8 Perfect Sampling of Regenerative Processes . . . . . . . 420<br/>9 Parallel Simulation . . . . . . . . . . . . . . . . . . . . 424<br/>10 Branching Processes . . . . . . . . . . . . . . . . . . . 426<br/>11 Importance Sampling for Portfolio VaR . . . . . . . . . 432<br/>12 Importance Sampling for Dependability Models . . . . 435<br/>13 Special Algorithms for the GI/G/1 Queue . . . . . . . 437<br/>Appendix 442<br/>A1 Standard Distributions . . . . . . . . . . . . . . . . . . 442<br/>A2 Some Central Limit Theory . . . . . . . . . . . . . . . 444<br/>A3 FFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444<br/>A4 The EMAlgorithm . . . . . . . . . . . . . . . . . . . . 445<br/>A5 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 447<br/>A6 Itô’s Formula . . . . . . . . . . . . . . . . . . . . . . . 448<br/>A7 Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . 450<br/>A8 Integral Formulas . . . . . . . . . . . . . . . . . . . . . 450<br/>Bibliography 452<br/>Web Links 469<br/>Index 471<br/></p>
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:随机模拟 introduction distribution Mathematical Optimization University Peter

沙发
yahoocom(真实交易用户) 发表于 2008-5-14 12:01:00

 这么好的书,怎么没人回应。

书越看越觉得模拟与仿真的重要性。

藤椅
Edwardu(真实交易用户) 发表于 2008-5-14 13:53:00
我买了,花大价钱,不知值不值

板凳
arange(未真实交易用户) 发表于 2008-5-14 16:15:00
贵了点,舍不得买

报纸
smilehu(未真实交易用户) 发表于 2008-5-15 10:37:00
太贵了
知我者谓我心忧,不知我者谓我何求

地板
cqhou(真实交易用户) 发表于 2008-5-15 16:47:00

好书!

7
vernor(真实交易用户) 发表于 2009-1-16 23:26:00
不得不说有点贵,还是买了吧。。。。

8
ljianb2005(未真实交易用户) 发表于 2009-1-21 22:57:00
有点贵了

9
yinyin841(真实交易用户) 发表于 2009-4-15 14:57:00
gui

10
黑色天使(真实交易用户) 发表于 2009-4-29 21:56:00
太贵啦!

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-30 02:16