2324 0

[数据挖掘理论与案例] Text Mining in WEKA Cookbook [推广有奖]

  • 0关注
  • 10粉丝

已卖:1624份资源

教授

8%

还不是VIP/贵宾

-

TA的文库  其他...

Must-Read Book

Winrats NewOccidental

Matlab NewOccidental

威望
1
论坛币
31404 个
通用积分
4.4011
学术水平
96 点
热心指数
43 点
信用等级
79 点
经验
9658 点
帖子
287
精华
10
在线时间
40 小时
注册时间
2013-12-14
最后登录
2024-4-12

楼主
农村固定观察点 发表于 2014-12-10 06:15:17 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

Text Mining in WEKA Cookbook


In this page I intend to provide useful hints and tips (recipes) for working with text data in WEKA. The information is organized as a list of blog posts and references, plus additional material like code and text collections.
I suggest to read my following posts on text classification with WEKA in the publication order:
I have some other posts on WEKA, like the following ones:
All my posts related to WEKA can be found using the label WEKA.
Interesting references for working with WEKA include:
  • Use WEKA in your Java code provides an excelent introduction to how to use the classes Instances, Filter, Classifier, Clusteres, Evaluation and AttributeSelection, in your own code.
  • WEKA programmatic use describes the learning process life-cycle and, more importantly, it explains how to deal with attributes in your Java code.
  • Text Categorization with WEKA deals with transforming a directory structure of classes (directories) and documents (inside those directories) into ARFF format for further processing. The code is available at ARFF files from Text Collections.
For testing your classifiers and integrating WEKA in your own code, I provide the following stuff:
You will find most of this stuff at my tmweka Github repository.

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Text Mining Cookbook Cook ning Book additional references following material provide

本帖被以下文库推荐

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2025-12-9 05:17