1484 2

[数据挖掘理论与案例] Selection of most relevant input parameters using WEKA [推广有奖]

  • 0关注
  • 10粉丝

已卖:1625份资源

教授

8%

还不是VIP/贵宾

-

TA的文库  其他...

Must-Read Book

Winrats NewOccidental

Matlab NewOccidental

威望
1
论坛币
31504 个
通用积分
4.4911
学术水平
96 点
热心指数
43 点
信用等级
79 点
经验
9658 点
帖子
287
精华
10
在线时间
40 小时
注册时间
2013-12-14
最后登录
2024-4-12

楼主
农村固定观察点 发表于 2014-12-10 09:09:24 |AI写论文
5论坛币
Selection of most relevant input parameters using WEKA for artificial neural network based solar radiation prediction modelsAbstract

The prediction of solar radiation is important for several applications in renewable energy research. Solar radiation is predicted by a number of solar radiation models both conventional and Artificial Neural Network (ANN) based models. There are a number of meteorological and geographical variables which affect solar radiation prediction, so identification of suitable variables for accurate solar radiation prediction is an important research area. With this main objective, Waikato Environment for Knowledge Analysis (WEKA) software is applied to 26 Indian locations having different climatic conditions to find most influencing input parameters for solar radiation prediction in ANN models. The input parameters identified are latitude, longitude, temperature, maximum temperature, minimum temperature, altitude and sunshine hours for different cities of India. In order to check the prediction accuracy using the identified parameters, three Artificial Neural Network (ANN) models are developed (ANN-1, ANN-2 and ANN-3). The maximum MAPE for ANN-1, ANN-2 and ANN-3 models are found to be 20.12%, 6.89% and 9.04% respectively, showing 13.23% improved prediction accuracy of the ANN-2 model which utilizes temperature, maximum temperature, minimum temperature, height above sea level and sunshine hours as input variables in comparison to the ANN-1 model. The WEKA identifies temperature, maximum temperature, minimum temperature, altitude and sunshine hours as the most relevant input variables and latitude, longitude as the least influencing variables in solar radiation prediction. The methodology is also used to identify the solar energy potential of Western Himalayan state of Himachal Pradesh, India. The results show good solar potential with yearly solar radiation variation as 3.59–5.38 kWh/m2/day for a large number of solar applications including solar power generation in this region.


关键词:parameters Selection Parameter paramete Election prediction important relevant research Network

本帖被以下文库推荐

沙发
水天一色DIY 在职认证  发表于 2014-12-11 10:25:41
我帮你把帖子置顶几天,看是否有人有

藤椅
Nicolle 学生认证  发表于 2014-12-11 22:09:50
提示: 作者被禁止或删除 内容自动屏蔽

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2026-1-2 09:36