|
mat2=matrix(c(195,93,34,20,27,27,26,39,39),nc=3,byrow = T,
dimnames = list(c('wu','xiang','ceng'),c('wu','zhong','zhong')))
G_value=function(mat){
G=0
for(i in 1:(dim(mat)[1]-1)){
for(j in 1:(dim(mat)[2]-1)){
for(l in (i+1):dim(mat)[1]){
for(m in (j+1):dim(mat)[2]){
G=G+mat[i,j]*mat[l,m]
}
}
}
}
return(Gvalue=G)
}
H_value=function(mat){
H=0
for(i in 1:(dim(mat)[1]-1)){
for(j in 2:dim(mat)[2]){
for(l in (i+1):dim(mat)[1]){
for(m in 1:(j-1)){
H=H+mat[i,j]*mat[l,m]
}
}
}
}
return(Hvalue=H)
}
G_value(mat2)
H_value(mat2)
z=G_value(mat2)-H_value(mat2)
TA_TB=function(mat){
TA=0
TB=0
v1=rowSums(mat)
v2=colSums(mat)
for(i in 1:dim(mat)[1]){
TA=TA+choose(v1[i],2)
}
for(j in 1:dim(mat)[2]){
TB=TB+choose(v2[j],2)
}
return(jieguo=c(TA,TB))
}
TA_TB(mat2)
t=z/sqrt((sum(mat)*(sum(mat2)-1)/2-TA_TB(mat2)[1])*(sum(mat2)*(sum(mat2)-1)/2-TA_TB(mat2)[2]))
t #kendall相关系数
cov_z=function(mat){
v1=rowSums(mat)
v2=colSums(mat)
num1=0
num2=0
for(i in 1:dim(mat)[1]){
num1=num1+v1[i]^3
}
for(j in 1:dim(mat)[2]){
num2=num2+v2[j]^3
}
num=(sum(mat)^3-num1)*(sum(mat)^3-num2)/(9*sum(mat)^3)
return(num)
}
test_value=z^2/cov_z(mat2) #服从自由度为1的卡方分布
|