楼主: karleenchan
1000 1

[其他] Uncertainty Modeling for Data Mining: A Label Semantics Approach 2015 [推广有奖]

  • 1关注
  • 56粉丝

已卖:2683份资源

院士

7%

还不是VIP/贵宾

-

威望
0
论坛币
26575 个
通用积分
66.0874
学术水平
161 点
热心指数
255 点
信用等级
134 点
经验
158146 点
帖子
3433
精华
0
在线时间
2082 小时
注册时间
2013-11-24
最后登录
2025-9-28

楼主
karleenchan 发表于 2015-2-22 16:05:20 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

(Advanced Topics in Science and Technology in China) -Uncertainty Modeling for D.pdf (6.62 MB, 需要: 10 个论坛币)

Zengchang Qin, Yongchuan Tang--咱們國內教授吐血之作, 能不support 嗎??

Machine learning and data mining are inseparably connected with uncertainty. The observable data for learning is usually imprecise, incomplete or noisy. Uncertainty Modeling for Data Mining: A Label Semantics Approach introduces 'label semantics', a fuzzy-logic-based theory for modeling uncertainty. Several new data mining algorithms based on label semantics are proposed and tested on real-world datasets. A prototype interpretation of label semantics and new prototype-based data mining algorithms are also discussed. This book offers a valuable resource for postgraduates, researchers and other professionals in the fields of data mining, fuzzy computing and uncertainty reasoning.

Zengchang Qin is an associate professor at the School of Automation Science and Electrical Engineering, Beihang University, China; Yongchuan Tang is an associate professor at the College of Computer Science, Zhejiang University, China.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:uncertainty Data Mining Uncertain certainty Semantic connected learning support usually tested

沙发
zhujch(未真实交易用户) 发表于 2015-2-22 16:14:48
good and share here

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-17 18:51