## ## Call:## lm(formula = y ~ x1 + x2 + x3 + x4, data = mydata)## ## Residuals:## Min 1Q Median 3Q Max ## -1.7870 -0.4966 -0.0756 0.6208 1.6979 ## ## Coefficients:## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 170.581 22.862 7.46 9.3e-07 ***## x1 -45.937 20.113 -2.28 0.036 * ## x2 -1.453 0.105 -13.77 1.2e-10 ***## x3 15.102 6.760 2.23 0.039 * ## x4 -1.650 0.727 -2.27 0.037 * ## ---## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1## ## Residual standard error: 0.929 on 17 degrees of freedom## Multiple R-squared: 0.966, Adjusted R-squared: 0.957 ## F-statistic: 119 on 4 and 17 DF, p-value: 3.42e-12
这是我弄出来的结果,不太清楚Residual standard error: 0.929 on 17 degrees of freedom是什么意思
这里面有统计量s^2吗


雷达卡



京公网安备 11010802022788号







