本人用典型相关分析方法得到如下结果,典型相关系数比原变量相关系数都要大,也通过了检验,但是原始变量与典型变量很多系数都是负的,典型载荷也多数是负数,这样是否意味着原变量的选取不当?还是没有影响?这样的结果能表明可以用典型变量表示两个指标之间存在相关性吗?谢谢!
输出结果如下:
Correlations for Set-1
x1 x2 x3 x4 x5 x6 x7
x1 1.0000 .9278 .8513 .5157 .9492 .9091 -.1894
x2 .9278 1.0000 .8438 .4521 .9431 .8458 -.1958
x3 .8513 .8438 1.0000 .4449 .8673 .8227 -.1510
x4 .5157 .4521 .4449 1.0000 .5328 .6607 -.1859
x5 .9492 .9431 .8673 .5328 1.0000 .8957 -.1545
x6 .9091 .8458 .8227 .6607 .8957 1.0000 -.1896
x7 -.1894 -.1958 -.1510 -.1859 -.1545 -.1896 1.0000
Correlations for Set-2
y1 y2 y3 y4 y5 y6
y1 1.0000 .9725 .3699 .3902 .1064 .2259
y2 .9725 1.0000 .3504 .3609 .1057 .1682
y3 .3699 .3504 1.0000 .1662 -.0028 .2226
y4 .3902 .3609 .1662 1.0000 -.0524 .3281
y5 .1064 .1057 -.0028 -.0524 1.0000 -.5161
y6 .2259 .1682 .2226 .3281 -.5161 1.0000
Correlations Between Set-1 and Set-2
y1 y2 y3 y4 y5 y6
x1 .0555 -.0852 .0726 .2167 -.0372 .1324
x2 .0623 -.0714 .0491 .1963 -.0575 .1544
x3 .1610 .0513 .1006 .2390 -.1259 .2067
x4 .3427 .2852 .1096 .1730 .0888 .0717
x5 .0943 -.0445 .0786 .2073 -.0866 .1958
x6 .1716 .0417 .0955 .2316 -.0003 .1210
x7 -.0590 -.0323 -.0355 -.0642 -.1005 -.0586
Canonical Correlations
1 .662
2 .430
3 .307
4 .180
5 .107
6 .059
Test that remaining correlations are zero:
Wilk's Chi-SQ DF Sig.
1 .395 253.532 42.000 .000
2 .704 95.955 30.000 .000
3 .863 40.073 20.000 .005
4 .953 13.131 12.000 .360
5 .985 4.091 6.000 .664
6 .997 .939 2.000 .625
Standardized Canonical Coefficients for Set-1
1 2 3 4 5 6
x1 -.894 1.412 1.341 1.207 -1.791 -.683
x2 .062 -.005 .854 -.185 1.539 2.769
x3 .501 -.856 -.933 1.100 -.983 .619
x4 .429 -.791 .329 -.149 .061 .061
x5 -.461 -.215 -2.602 -2.132 .593 -2.185
x6 -.330 -.404 1.083 .373 .694 -.364
x7 .002 .028 -.045 .699 .699 -.159
Standardized Canonical Coefficients for Set-2
1 2 3 4 5 6
y1 -3.819 -1.528 .511 -.121 1.893 -.559
y2 4.146 .526 -.429 .176 -1.368 .552
y3 -.080 .096 -.004 .213 -.551 -.909
y4 -.286 -.001 .191 .600 -.695 .560
y5 .111 .087 .620 -.933 -.464 .132
y6 .176 -.046 -.554 -1.091 -.450 .239
Canonical Loadings for Set-1
1 2 3 4 5 6
x1 -.927 -.307 .031 .078 -.106 .070
x2 -.865 -.326 -.070 -.037 .086 .348
x3 -.689 -.534 -.284 .257 -.201 .231
x4 -.245 -.833 .329 -.140 .041 -.139
x5 -.884 -.411 -.181 -.060 .039 .046
x6 -.808 -.550 .151 .078 -.001 -.020
x7 .137 .148 -.190 .627 .651 -.270
Cross Loadings for Set-1
1 2 3 4 5 6
x1 -.614 -.132 .010 .014 -.011 .004
x2 -.573 -.140 -.021 -.007 .009 .020
x3 -.456 -.230 -.087 .046 -.022 .014
x4 -.162 -.359 .101 -.025 .004 -.008
x5 -.586 -.177 -.056 -.011 .004 .003
x6 -.535 -.237 .046 .014 .000 -.001
x7 .091 .064 -.058 .113 .070 -.016
Canonical Loadings for Set-2
1 2 3 4 5 6
y1 .124 -.982 .108 .017 -.064 -.072
y2 .342 -.924 .108 .067 -.096 -.054
y3 -.049 -.295 -.059 .089 -.544 -.776
y4 -.241 -.410 .021 .343 -.665 .461
y5 .067 .003 .905 -.397 -.137 -.020
y6 -.158 -.326 -.769 -.363 -.363 .119
Cross Loadings for Set-2
1 2 3 4 5 6
y1 .082 -.422 .033 .003 -.007 -.004
y2 .227 -.398 .033 .012 -.010 -.003
y3 -.032 -.127 -.018 .016 -.058 -.045
y4 -.160 -.177 .006 .062 -.071 .027
y5 .045 .001 .277 -.072 -.015 -.001
y6 -.105 -.140 -.236 -.065 -.039 .007
Redundancy Analysis:
Proportion of Variance of Set-1 Explained by Its Own Can. Var.
Prop Var
CV1-1 .514
CV1-2 .239
CV1-3 .041
CV1-4 .071
CV1-5 .069
CV1-6 .039
Proportion of Variance of Set-1 Explained by Opposite Can.Var.
Prop Var
CV2-1 .225
CV2-2 .044
CV2-3 .004
CV2-4 .002
CV2-5 .001
CV2-6 .000
Proportion of Variance of Set-2 Explained by Its Own Can. Var.
Prop Var
CV2-1 .037
CV2-2 .363
CV2-3 .240
CV2-4 .070
CV2-5 .150
CV2-6 .140
Proportion of Variance of Set-2 Explained by Opposite Can. Var.
Prop Var
CV1-1 .016
CV1-2 .067
CV1-3 .023
CV1-4 .002
CV1-5 .002
CV1-6 .000
------ END MATRIX -----


雷达卡



京公网安备 11010802022788号







