大神们,连玉君老师的xtthres估计结果怎么看啊
xtthres y3 x8, th(x1) d(x1)
Begin Time: 10 Jun 2015 19:17:14
+----------------------------------+
| ---单一门槛面板模型--- |
+----------------------------------+
第一个门槛估计值(gamma1):8218.000
Fixed-effects (within) regression Number of obs = 341
Group variable: id Number of groups = 31
R-sq: within = 0.8213 Obs per group: min = 11
between = 0.7344 avg = 11.0
overall = 0.6583 max = 11
F(3,307) = 470.43
corr(u_i, Xb) = 0.4538 Prob > F = 0.0000
------------------------------------------------------------------------------
y3 | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
x8 | .0343213 .0015932 21.54 0.000 .0311863 .0374563
x1_1 | .0050113 .0012315 4.07 0.000 .0025881 .0074346
x1_2 | .0022173 .0008343 2.66 0.008 .0005756 .0038589
_cons | 63.57019 3.423224 18.57 0.000 56.83424 70.30614
-------------+----------------------------------------------------------------
sigma_u | 61.290286
sigma_e | 18.320773
rho | .91797692 (fraction of variance due to u_i)
------------------------------------------------------------------------------
F test that all u_i=0: F(30, 307) = 70.59 Prob > F = 0.0000
Note: x1_1: x1*I(x1<8218)
x1_2: x1*I(x1>=8218)
STATA 自抽样中,请等待 ... ...
+----------------------------------+
| ---双重门槛面板模型--- |
+----------------------------------+
---搜索第二个门槛值---
第二个门槛估计值(gamma2): 1.1e+04
---重新搜索第一个门槛值---
更新后的第一个门槛估计值(gamma1):3719.000
Fixed-effects (within) regression Number of obs = 341
Group variable: id Number of groups = 20
R-sq: within = 0.7719 Obs per group: min = 11
between = 0.8964 avg = 17.1
overall = 0.7470 max = 33
F(4,317) = 268.26
corr(u_i, Xb) = 0.4591 Prob > F = 0.0000
------------------------------------------------------------------------------
y3 | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
x8 | .0565297 .0019472 29.03 0.000 .0526986 .0603608
x1_1 | -.0036334 .0025831 -1.41 0.161 -.0087155 .0014488
x1_2 | -.0079522 .0014758 -5.39 0.000 -.0108558 -.0050486
x1_3 | -.0066887 .0009104 -7.35 0.000 -.00848 -.0048974
_cons | 78.88274 6.400239 12.32 0.000 66.29042 91.47505
-------------+----------------------------------------------------------------
sigma_u | 52.412947
sigma_e | 29.040181
rho | .76511793 (fraction of variance due to u_i)
------------------------------------------------------------------------------
F test that all u_i=0: F(19, 317) = 33.13 Prob > F = 0.0000
Note: x1_1: x1*I(x1<3719)
x1_2: x1*I(3719<=x1<11042)
x1_3: x1*I(x1>=11042)
STATA 自抽样中,请等待 ... ...
+----------------------------------+
| ---三重门槛面板模型--- |
+----------------------------------+
第三个门槛估计值(gamma3):5203.000
Fixed-effects (within) regression Number of obs = 341
Group variable: id Number of groups = 20
R-sq: within = 0.6973 Obs per group: min = 11
between = 0.9186 avg = 17.1
overall = 0.7448 max = 33
F(4,317) = 182.54
corr(u_i, Xb) = 0.5159 Prob > F = 0.0000
------------------------------------------------------------------------------
y3 | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
x8 | .0522942 .0023351 22.40 0.000 .0477 .0568884
x1_1 | -.000205 .0028798 -0.07 0.943 -.005871 .0054609
x1_2 | -.0043986 .0016462 -2.67 0.008 -.0076376 -.0011597
x1_3 | 0 (omitted)
x1_4 | -.0041216 .001118 -3.69 0.000 -.0063212 -.001922
_cons | 70.55095 7.082866 9.96 0.000 56.61558 84.48632
-------------+----------------------------------------------------------------
sigma_u | 52.227092
sigma_e | 32.708211
rho | .71828094 (fraction of variance due to u_i)
------------------------------------------------------------------------------
F test that all u_i=0: F(19, 317) = 22.58 Prob > F = 0.0000
Note: x1_1: x1*I(x1<3719)
x1_2: x1*I(3719<=x1<3719)
x1_3: x1*I(3719<=x1<11042)
x1_4: x1*I(x1>=11042)
STATA 自抽样中,请等待 ... ...
+--------------------------------------+
| ---门槛估计值和置信区间--- |
+--------------------------------------+
-------------------------------------------------------------------------------
门槛估计值 95% 置信区间
-----------------------------------------------------------------------------
单一门槛模型(g1) 8218.000 [ 5203.000 , 1.1e+04 ]
-----------------------------------------------------------------------------
双重门槛模型:
Ito1(g1) 1.1e+04 [ 3090.000 , 1.2e+04 ]
Ito2(g2) 3719.000 [ 1465.000 , 8669.000 ]
-----------------------------------------------------------------------------
三重门槛模型(g3): 5203.000 [ 3871.000 , 8669.000 ]
-------------------------------------------------------------------------------
Note: g# denotes gamma#, the estimated threshold values, #=1,2,3
+------------------------------------+
| ---门槛效果自抽样检验--- |
+------------------------------------+
-------------------------------------------------------------------------------
临界值
------------------------------------------------------------------
模型 F值 P值 BS次数 1% 5% 10%
-------------------------------------------------------------------------------
单一门槛 18.244* 0.093 300 33.695 21.935 17.764
双重门槛 12.329** 0.033 300 24.522 7.118 1.974
三重门槛 0.000 0.167 300 0.000 0.000 0.000
-------------------------------------------------------------------------------
+--------------------------------------+
| ---门槛模型系数估计结果--- |
+--------------------------------------+
--------------------------------------------------------------------
(1) (2) (3)
Single Double Triple
--------------------------------------------------------------------
x8 0.0540*** 0.0565*** 0.0523***
(27.53) (29.03) (22.40)
x1_1 -0.00700*** -0.00363 -0.000205
(-4.36) (-1.41) (-0.07)
x1_2 -0.00717*** -0.00795*** -0.00440***
(-7.75) (-5.39) (-2.67)
x1_3 -0.00669***
(-7.35)
o.x1_3 0
(.)
x1_4 -0.00412***
(-3.69)
Constant 85.12*** 78.88*** 70.55***
(17.92) (12.32) (9.96)
--------------------------------------------------------------------
r2_w 0.764 0.772 0.697
r2_b 0.904 0.896 0.919
r2_o 0.744 0.747 0.745
N 341 341 341
--------------------------------------------------------------------
t statistics in parentheses
* p<0.1, ** p<0.05, *** p<0.01
你可以输入或点击如下命令查看各个门槛的置信区间图:
Single Threshold: xttr_graph
Double Threshold(1st round): xttr_graph, m(22)
Double Threshold(2ed round): xttr_graph, m(21)
Triple Threshold: xttr_graph, m(3)
For details, see: xttr_graph
Over Time:10 Jun 2015 19:18:56 Time used: 101.394s
. xttr_graph
== Hi, you can right click the graph and save it!==
. xttr_graph, m(22)
== Hi, you can right click the graph and save it!==
. xttr_graph, m(21)
== Hi, you can right click the graph and save it!==
.


雷达卡






京公网安备 11010802022788号







