楼主: gy20081006
1921 0

[学科前沿] High-Dimensional Covariance Estimation [推广有奖]

  • 1关注
  • 0粉丝

已卖:189份资源

博士生

8%

还不是VIP/贵宾

-

威望
0
论坛币
109 个
通用积分
4.4246
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
1892 点
帖子
127
精华
0
在线时间
312 小时
注册时间
2012-11-1
最后登录
2025-2-7

楼主
gy20081006 发表于 2015-7-19 21:43:35 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Part I: Motivation and the Basics
Chapter 1: Introduction
1.1 Least Squares and Regularized Regression
1.2 Lasso: Survival of The Bigger
1.3 Thresholding The Sample Covariance Matrix
1.4 Sparse PCA and Regression
1.5 Graphical Models: Nodewise Regression
1.6 Cholesky Decomposition and Regression
1.7 The Bigger Picture: Latent Factor Models
1.8 Further Reading

Chapter 2: Data, Sparsity, and Regularization
2.1 Data Matrix: Examples
2.2 Shrinking The Sample Covariance Matrix
2.3 Distribution of The Sample Eigenvalues
2.4 Regularizing Covariances Like a Mean
2.5 The Lasso Regression
2.6 Lasso: Variable Selection and Prediction
2.7 Lasso: Degrees of Freedom and Bic
2.8 Some Alternatives to The Lasso Penalty

Chapter 3: Covariance Matrices
3.1 Definition and Basic Properties
3.2 The Spectral Decomposition
3.3 Structured Covariance Matrices
3.4 Functions of a Covariance Matrix
3.5 PCA: The Maximum Variance Property
3.6 Modified Cholesky Decomposition
3.7 Latent Factor Models
3.8 GLM for Covariance Matrices
3.9 GLM via the Cholesky Decomposition
3.10 GLM for Incomplete Longitudinal Data
3.11 A Data Example: Fruit Fly Mortality Rate
3.12 Simulating Random Correlation Matrices
3.13 Bayesian Analysis of Covariance Matrices

Part II: Covariance Estimation: Regularization
Chapter 4: Regularizing the Eigenstructure
4.1 Shrinking The Eigenvalues
4.2 Regularizing The Eigenvectors
4.3 A Duality Between PCA and SVD
4.4 Implementing Sparse PCA: A Data Example
4.5 Sparse Singular Value Decomposition (SSVD)
4.6 Consistency of PCA
4.7 Principal Subspace Estimation
4.8 Further Reading

Chapter 5: Sparse Gaussian Graphical Models
5.1 Covariance Selection Models: Two Examples
5.2 Regression Interpretation of Entries of Σ−1
5.3 Penalized Likelihood and Graphical Lasso
5.4 Penalized Quasi-Likelihood Formulation
5.5 Penalizing The Cholesky Factor
5.6 Consistency and Sparsistency
5.7 Joint Graphical Models
5.8 Further Reading

Chapter 6: Banding, Tapering, and Thresholding
6.1 Banding The Sample Covariance Matrix
6.2 Tapering The Sample Covariance Matrix
6.3 Thresholding The Sample Covariance Matrix
6.4 Low-Rank Plus Sparse Covariance Matrices
6.5 Further Reading

Chapter 7: Multivariate Regression: Accounting for
Correlation
7.1 Multivariate Regression and LS Estimators
7.2 Reduced Rank Regressions (RRR)
7.3 Regularized Estimation of B
7.4 Joint Regularization of (B, Ω)
7.5 Implementing MRCE: Data Examples
7.6 Further Reading
Bibliography
Index
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Dimensional covariance Estimation dimension variance Matrix

本帖被以下文库推荐

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-24 16:27