楼主: igs816
6711 48

[其他] Mastering Probabilistic Graphical Models using Python by Ankur Ankan [推广有奖]

已卖:261186份资源

泰斗

6%

还不是VIP/贵宾

-

威望
9
论坛币
1765561 个
通用积分
20494.2983
学术水平
2754 点
热心指数
3477 点
信用等级
2565 点
经验
485149 点
帖子
5457
精华
52
在线时间
3897 小时
注册时间
2007-8-6
最后登录
2025-12-5

高级学术勋章 特级学术勋章 高级信用勋章 特级信用勋章 高级热心勋章 特级热心勋章

楼主
igs816 在职认证  发表于 2015-8-14 00:20:06 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
th_vOcJvL0R9VTIIxDYL2F41U3npc061Paw.jpeg
Mastering Probabilistic Graphical Models using Python by Ankur Ankan
English | 26 July 2015 | ISBN: 1784394688 | 284 Pages | EPUB/MOBI/PDF (True) | 34.35 MB With: Code Files                                                

If you are a researcher or a machine learning enthusiast, or are working in the data science field and have a basic idea of Bayesian learning or probabilistic graphical models, this book will help you to understand the details of graphical models and use them in your data science problems.

Master probabilistic graphical models by learning through real-world problems and illustrative code examples in Python

About This Book

Gain in-depth knowledge of Probabilistic Graphical Models
Model time-series problems using Dynamic Bayesian Networks
A practical guide to help you apply PGMs to real-world problems

What You Will Learn

Get to know the basics of probability theory and graph theory
Work with Markov networks
Implement Bayesian networks
Exact inference techniques in graphical models such as the variable elimination algorithm
Understand approximate inference techniques in graphical models such as message passing algorithms
Sampling algorithms in graphical models
Grasp details of Naive Bayes with real-world examples
Deploy probabilistic graphical models using various libraries in Python
Gain working details of Hidden Markov models with real-world examples

In Detail

Probabilistic graphical models is a technique in machine learning that uses the concepts of graph theory to concisely represent and optimally predict values in our data problems.

Graphical models gives us techniques to find complex patterns in the data and are widely used in the field of speech recognition, information extraction, image segmentation, and modeling gene regulatory networks.

This book starts with the basics of probability theory and graph theory, then goes on to discuss various models and inference algorithms. All the different types of models are discussed along with code examples to create and modify them, and also run different inference algorithms on them. There is an entire chapter that goes on to cover Naive Bayes model and Hidden Markov models. These models have been thoroughly discussed using real-world examples.

本帖隐藏的内容

Mastering Probabilistic Graphical Models Using Python.rar (32.33 MB, 需要: 10 个论坛币) 本附件包括:
  • Mastering Probabilistic Graphical Models Using Python.zip
  • Mastering Probabilistic Graphical Models Using Python [eBook].epub
  • Mastering Probabilistic Graphical Models Using Python [eBook].mobi
  • Mastering Probabilistic Graphical Models Using Python [eBook].pdf



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Mastering graphical GRAPHIC python Master understand learning details machine science

本帖被以下文库推荐

沙发
auirzxp(未真实交易用户) 学生认证  发表于 2015-8-14 00:29:20
提示: 作者被禁止或删除 内容自动屏蔽

藤椅
fengyg(真实交易用户) 企业认证  发表于 2015-8-14 07:38:32
kankan

板凳
summerge(未真实交易用户) 在职认证  发表于 2015-8-14 08:18:15
非常好!

报纸
nadjainhell(真实交易用户) 发表于 2015-8-14 09:34:39
感谢分享

地板
shgby(真实交易用户) 发表于 2015-8-14 09:52:59
Mastering Probabilistic Graphical Models

7
xuruilong100(未真实交易用户) 发表于 2015-8-14 10:02:30
感谢分享再接再厉

8
condmn(未真实交易用户) 发表于 2015-8-14 10:02:59

9
allain(真实交易用户) 在职认证  发表于 2015-8-14 10:05:40
kkkkkkkkkkk

10
duoduoduo(真实交易用户) 在职认证  发表于 2015-8-14 10:51:47
en
不错的内容
visualize是好东西

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jr
拉您进交流群
GMT+8, 2025-12-5 20:56